Patents by Inventor Scott Sutherland

Scott Sutherland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180105470
    Abstract: Disclosed herein are methods for making a bonded refractory material, the methods comprising preparing a slurry comprising glass precursor particles having an average particle size ranging from about 1 nm to about 200 nm; combining zirconia particles with the slurry to form a batch composition comprising at least about 80% by weight of zirconia; forming a green body from the batch composition; and sintering the green body to form a sintered refractory material. Sintered high-zirconia refractory materials can comprise at least about 80% by weight of zirconia having an average grain size of 100 microns or less, wherein the zirconia is interspersed in a glassy phase, and wherein the sintered refractory materials comprise about 15% or less by weight of the glassy phase. Melting vessels having at least one interior surface comprising such sintered zirconia refractory materials are further disclosed herein.
    Type: Application
    Filed: April 21, 2016
    Publication date: April 19, 2018
    Inventors: Matthew John Dejneka, John Christopher Mauro, Mallanagouda Dyamanagouda Patil, Kim Doreen Pierotti, James Scott Sutherland, Akenda Zellet-Lukaso
  • Publication number: 20170343733
    Abstract: An optical wire bond apparatus for optically connecting an optical-electrical integrated circuit (OE-IC) to an optical-electrical printed circuit board (OE-PCB) is formed by laser writing cores in a flexible glass support member to define an array of optical waveguides. The support member has a bend section and the waveguides reside close to either a top or bottom surface of the support member at the bend section. The cores have a front-end portion that can be laser written after the front end of the support member is coarse-aligned to optical waveguide structures in the OE-PCB to obtain fine alignment. The support members can be formed from flexible glass sheets or by drawing a glass preform. A photonic assembly that includes the OE-IC and the OE-PCB optically connected using the optical wire bond apparatus is also disclosed.
    Type: Application
    Filed: May 31, 2016
    Publication date: November 30, 2017
    Inventor: James Scott Sutherland
  • Publication number: 20170341972
    Abstract: Methods of reshaping ferrules (20) used in optical fiber cables assemblies (170) are disclosed. The reshaping methods reduce a core-to-ferrule concentricity error (E), which improves coupling efficiency and optical transmission. The methods include measuring a distance (?) and angular direction (?) from a true center (30) of the ferrule to the core (46), wherein the true center (30) is based on an outer surface (26) of the ferrule. The methods also include reshaping at least a portion (26P) of the ferrule (20) to define a new true center (30?) of the ferrule (20) and reduce the distance (?). A variety of reshaping techniques are also disclosed.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 30, 2017
    Inventors: DANA CRAIG BOOKBINDER, Garrett Andrew Piech, James Scott Sutherland, Michael Brian Webb, Elvis Alberto Zambrano
  • Patent number: 9784930
    Abstract: An optical interface device for optically connecting photonic devices to optical device along with methods of making. The method includes providing a glass support member that is either monolithic or laminated. A laser beam is used to write cores in the body of the support member. The support member includes a bend section and the cores generally follow the bend section and serve to define curved optical waveguides. The cores provide strong out-of-plane optical confinement, thereby allowing for strong bends and therefore a compact design for the optical interface device.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: October 10, 2017
    Assignee: Corning Optical Communications LLC
    Inventor: James Scott Sutherland
  • Patent number: 9766411
    Abstract: Optical interface devices and methods employing optical fibers and support member having a bend section are disclosed, wherein the optical interface device is used for optically connecting at least one photonic device to at least one optical device via at least one optical fiber. An array of optical fibers is arranged immediately adjacent a portion of the outer curved surface at the bend section. A fiber alignment member having a fiber alignment feature engages the array of optical fibers at a back-end flat portion of the support member so that end faces of the optical fibers are substantially co-planar with a bottom surface of the fiber alignment member and a back end of the support member. A securing layer disposed over the optical fiber array serves to secure the optical fiber array to the outer.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: September 19, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Douglas Llewellyn Butler, William Kenneth Denson, James Scott Sutherland
  • Publication number: 20170146745
    Abstract: Optical interface devices and methods employing optical fibers and support member having a bend section are disclosed, wherein the optical interface device is used for optically connecting at least one photonic device to at least one optical device via at least one optical fiber. An array of optical fibers is arranged immediately adjacent a portion of the outer curved surface at the bend section. A fiber alignment member having a fiber alignment feature engages the array of optical fibers at a back-end flat portion of the support member so that end faces of the optical fibers are substantially co-planar with a bottom surface of the fiber alignment member and a back end of the support member.
    Type: Application
    Filed: November 20, 2015
    Publication date: May 25, 2017
    Inventors: Douglas Llewellyn Butler, William Kenneth Denson, James Scott Sutherland
  • Publication number: 20170146751
    Abstract: An optical interface device for optically connecting photonic devices to optical device along with methods of making. The method includes providing a glass support member that is either monolithic or laminated. A laser beam is used to write cores in the body of the support member. The support member includes a bend section and the cores generally follow the bend section and serve to define curved optical waveguides. The cores provide strong out-of-plane optical confinement, thereby allowing for strong bends and therefore a compact design for the optical interface device.
    Type: Application
    Filed: February 8, 2017
    Publication date: May 25, 2017
    Inventor: James Scott Sutherland
  • Patent number: 9652707
    Abstract: Protocols, systems, and methods are disclosed for two or more RFID tags to communicate with each other using direct connections, wherein the two or more RFID tags are configured to mate and directly exchange identification information. A disclosed method includes detecting that a first RFID tag is connected to a second RFID tag. A first message comprising a first tag identification is sent directly from the first RFID tag to the second RFID tag, and the first RFID tag receives a first acknowledgement from the second RFID tag if the first tag identification was correctly received. A second message comprising a second tag identification may be sent directly from the second RFID tag to the first RFID tag and a second acknowledgement may be received from the first RFID tag if the second tag identification was correctly received.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: May 16, 2017
    Assignee: Fiber Mountain, Inc.
    Inventors: John David Downie, Leo Nederlof, James Scott Sutherland, Richard Edward Wagner, Dale Alan Webb, Matthew Scott Whiting
  • Patent number: 9652708
    Abstract: Protocols, systems, and methods are disclosed for at least one RFID tag and a device, to communicate with each other using direct connections, wherein the at least one RFID tag and the device are configured to mate and directly exchange identification information. A message comprising a tag identification may be sent directly from the RFID tag to the device, and the RFID tag may receive a first acknowledgement from the device if the first tag identification was correctly received. A connection may be detected between the RFID tag and the device prior to directly exchanging information. The exchange of information may include sending data from the device to the RFID tag.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: May 16, 2017
    Assignee: Fiber Mountain, Inc.
    Inventors: John David Downie, James Scott Sutherland, Richard Edward Wagner, Dale Alan Webb, Matthew Scott Whiting
  • Patent number: 9652709
    Abstract: Protocols, systems, and methods are disclosed for two or more RFID tags to communicate with each other and a device using direct connections. A disclosed system includes a first RFID tag, a second RFID tag, and a device. The first and second RFID tags are configured to mate to each other and directly exchange information. The second RFID tag is further configured to directly exchange information with the device such that information received directly at the second RFID tag from the first RFID tag may then be directly exchanged with the device. The first RFID tag may send a first tag identification directly from the first RFID tag to the second RFID tag. The second RFID tag may then send a first acknowledgement to the first RFID tag if the first tag identification was correctly received by the second RFID tag.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: May 16, 2017
    Assignee: Fiber Mountain, Inc.
    Inventors: John David Downie, James Scott Sutherland, Richard Edward Wagner, Dale Alan Webb, Matthew Scott Whiting
  • Publication number: 20170131140
    Abstract: A non-contact method of measuring an insertion loss of a DUT connector is disclosed. The DUT connector has a first ferrule with a first optical fiber and a first end face. The method utilizes a reference connector having a second ferrule with a second optical fiber and a second end face. The method includes: axially aligning the first and second ferrules so that the first and second end faces are confronting and spaced apart to define a gap with an axial gap distance d; measuring values of the insertion loss between the first and second optical fibers for different gap distances d>0; and estimating a value for the insertion loss for a gap distance of d=0 based on the measured values of the insertion loss when d>0.
    Type: Application
    Filed: January 24, 2017
    Publication date: May 11, 2017
    Inventors: Adam Joseph Fusco, Daniel Ohen Ricketts, James Scott Sutherland, Neil David Vance, Elvis Alberto Zambrano
  • Patent number: 9645044
    Abstract: A controlled-contact method of measuring an insertion loss of a compressible DUT having a first ferrule with a first optical fiber and a first end face is disclosed. The method utilizes a compressible reference connector having a second ferrule with a second optical fiber and a second end face. The method includes: axially aligning the first and second ferrules to define a gap with an axial gap distance of greater than 150 ?m; moving the reference connector at a connector velocity in the range from 1 mm/s to 5 mm/s; when the gap distance is less than 150 ?m, reducing the connector velocity to between 10 ?m/s and 500 ?m/s until contact while continuing to measure the coupled optical power; after contact, increasing the connector velocity as the reference and DUT connector axially compress. The insertion loss is determined from ongoing measurements of the coupled optical power.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: May 9, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Adam Joseph Fusco, Daniel Ohen Ricketts, James Scott Sutherland, Neil David Vance, Elvis Alberto Zambrano
  • Publication number: 20170082809
    Abstract: An optical interface device for optically connecting photonic devices to optical device along with methods of making. The method includes providing a glass support member that is either monolithic or laminated. A laser beam is used to write cores in the body of the support member. The support member includes a bend section and the cores generally follow the bend section and serve to define curved optical waveguides. The cores provide strong out-of-plane optical confinement, thereby allowing for strong bends and therefore a compact design for the optical interface device.
    Type: Application
    Filed: September 22, 2015
    Publication date: March 23, 2017
    Inventor: James Scott Sutherland
  • Patent number: 9594220
    Abstract: An optical interface device for optically connecting photonic devices to optical device along with methods of making. The method includes providing a glass support member that is either monolithic or laminated. A laser beam is used to write cores in the body of the support member. The support member includes a bend section and the cores generally follow the bend section and serve to define curved optical waveguides. The cores provide strong out-of-plane optical confinement, thereby allowing for strong bends and therefore a compact design for the optical interface device.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: March 14, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventor: James Scott Sutherland
  • Patent number: 9563832
    Abstract: Excess radio-frequency (RF) power storage and power sharing RF Identification (RFID) tags, and related RFID tag connection systems and methods are disclosed. The excess RF power storage and power sharing RFID tags and related RFID tag connection systems and methods in embodiments disclosed herein allow connected RFID tags to store excess energy derived from excess received RF power in a shared energy storage device. In this manner, an individual RFID tag or a group of connected RFID tags in the RFID tag connection system can continue operation during temporary times when sufficient RF power is not being received from a RFID reader. Sharing stored energy derived from excess received RF power in a shared energy storage device among connected RFID tags in a RFID tag connection system can significantly mitigate problems of RF power interruption.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 7, 2017
    Assignee: Corning Incorporated
    Inventors: John David Downie, James Scott Sutherland, James Patrick Trice, Richard Edward Wagner, Matthew Scott Whiting
  • Patent number: 9557488
    Abstract: An optical connector for optically connecting at least one light source to at least one light receiver is disclosed. The optical connector includes first and second connector members respectively having first and second positive-power lens elements with respective first and second planar lens surfaces. The lens elements are arranged in their respective connector members such that when the two connector members are operably mated, the first and second lenses form an optical system where the first and second planar lens surfaces are spaced apart in opposition with a narrow gap in between, and are non-perpendicular to the optical system axis. The lenses may be conventional uniform-refractive-index lenses having a convex surface or may be gradient-index lenses having two planar surfaces. The optical connector is tolerant to contamination that can find its way into the narrow gap.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: January 31, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Jeffery Alan DeMeritt, Davide Domenico Fortusini, James Scott Sutherland
  • Patent number: 9551849
    Abstract: Disclosed are interposer structures having an optical fiber connection and a related fiber optic ferrule that can form a portion of an optical assembly. The interposer structure is useful for transmitting optical signals to/from an integrated circuit that may be attached to the interposer. Specifically, the interposer structure and the related ferrule of the optical connector provide a passively aligned structure having a matched thermal response to maintain a suitable optical connection between the devices over a range of temperatures.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: January 24, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Douglas Llewellyn Butler, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther, James Scott Sutherland
  • Publication number: 20160317075
    Abstract: We have developed a novel AKI diagnostic algorithm upon KID 2009 database. The KID is multi-featured and the AKI and non-AKI groups are highly imbalanced, making it challenging to describe them via simple linear statistics. Thus, to identify features effectively, our AKI association studies employed statistical learning strategies; a predictive model was created to accurately determine which KID data elements were highly associated with an AKI diagnosis. We employed prediction analysis of microarrays (PAM), which is commonly applied to high-feature datasets such as DNA microarrays; PAM determines which data elements, or features, best contribute to the predictive model or characterize individual classes/cohorts, Clinical Classification Software codes (286 diagnosis, 231 procedural) were used to bin ICD-9-CM codes (n=6,722) and analyzed by PAM. PAM identified relevant AKI predictors and eliminated irrelevant data elements, which constitute noise.
    Type: Application
    Filed: September 12, 2014
    Publication date: November 3, 2016
    Inventors: Jun Ji, Bruce Xuefeng Ling, Scott Sutherland
  • Patent number: 9442005
    Abstract: A non-contact method of measuring an insertion loss of a DUT connector is disclosed. The DUT connector has a first ferrule with a first optical fiber and a first end face. The method utilizes a reference connector having a second ferrule with a second optical fiber and a second end face. The method includes: axially aligning the first and second ferrules so that the first and second end faces are confronting and spaced apart to define a gap with an axial gap distance d; measuring values of the insertion loss between the first and second optical fibers for different gap distances d>0; and estimating a value for the insertion loss for a gap distance of d=0 based on the measured values of the insertion loss when d>0.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: September 13, 2016
    Assignee: Corning Optical Communications LLC
    Inventors: Adam Joseph Fusco, Daniel Ohen Ricketts, James Scott Sutherland, Neil David Vance, Elvis Alberto Zambrano
  • Patent number: 9415357
    Abstract: Honeycomb body interdigitating mixers have parallel cells extending along a common direction, the mixer comprising a first fluid path extending within a honeycomb body perpendicular to the common direction, at least a high aspect ratio portion of the first fluid path having an aspect ratio of height in the common direction to width perpendicular to the common direction and to the first path direction of at least 3:1, and a second fluid path extending perpendicular to the common direction, the second fluid also having a high aspect ratio portion having an aspect ratio of at least 3:1, wherein the first fluid path is fluidically connected to the second fluid path within their respective high aspect ratio portions via a group of apertures, the group extending in the common direction, the group of apertures taken together having a ratio of height to width of at least 3:1.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: August 16, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Siddharth Bhopte, James Scott Sutherland