Patents by Inventor Scott Sutherland

Scott Sutherland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220413228
    Abstract: The present disclosure relates to lensed optical fiber connector ferrule end faces having molded contact surfaces. The contact surfaces reduce ferrule end face contact area and thereby reduce the influence of trapped dust and debris on lens angular misalignment.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: William James Miller, James Scott Sutherland
  • Publication number: 20220401952
    Abstract: A module and a process for forming a monolithic substantially closed-porosity silicon carbide fluidic module having a tortuous fluid passage extending through the module, the tortuous fluid passage having an interior surface, the interior surface having a surface roughness in the range of from 0.1 to 10 ?m Ra. The process includes positioning a positive fluid passage mold within a volume of silicon carbide powder, the powder coated with a binder; pressing the volume of silicon carbide powder with the mold inside to form a pressed body; heating the pressed body to remove the mold; and sintering the pressed body.
    Type: Application
    Filed: September 30, 2020
    Publication date: December 22, 2022
    Inventors: George Edward Berkey, Alexander Lee Cuno, John Walter Grunden, Kyler Robert Hurlburt, Yanxia Ann Lu, James Scott Sutherland, Oscar Walter Wheeler
  • Publication number: 20220404555
    Abstract: An optical assembly includes stacked planar lightwave circuit (PLC) members each having a plurality of waveguides in a respective plane, to provide optical connections to two-dimensional arrays of external optical waveguides (e.g., optical fiber cores), with one array including non-coplanar groups of waveguides having group members that are alternately arranged in a lateral direction. An optical assembly may provide optical connections between array of cores having a different pitch and/or orientation to serve as a fanout interface. Methods for fabricating an optical assembly are further provided.
    Type: Application
    Filed: June 7, 2022
    Publication date: December 22, 2022
    Inventors: Lars Martin Otfried Brusberg, Douglas Liewellyn Butler, David Francis Dawson-Elli, James Scott Sutherland
  • Patent number: 11500160
    Abstract: A passively aligned fan-out apparatus for a multicore fiber (MCF) includes a fan-out assembly that comprises a fan-out substrate, small-clad fibers (SCFs) supported in SCF V-grooves of the fan-out substrate, and alignment rods disposed outboard alignment V-grooves of the fan-out substrate. The SCFs have a distal-end pitch P2D at a distal end of the fan-out substrate greater than the proximal-end pitch P2P of the SCFs at a proximal end of the fan-out substrate. An MCF assembly and/or single mode fiber (SMF) assembly may also be provided as part of the fan-out apparatus.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: November 15, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Douglas Llewellyn Butler, James Scott Sutherland, Aramais Robert Zakharian
  • Publication number: 20220334331
    Abstract: A optoelectronic assembly is provided including a photonic integrated circuit (PIC) including at least one electronic connection element and plurality of waveguides disposed on a PIC face, a printed circuit board (PCB) including at least one PCB electronic connection element, which is complementary to the at least one electronic connection element of the PIC and the PIC is configured to be flip chip mounted to the PCB, a lidless fiber array unit including a support substrate having a substantially flat first surface and a signal fiber array including a plurality of optical fibers supported on the first surface, and an alignment substrate disposed on the PIC face and configured to align the plurality of optical fibers of the signal fiber array with the plurality of waveguides.
    Type: Application
    Filed: July 1, 2022
    Publication date: October 20, 2022
    Inventor: James Scott Sutherland
  • Publication number: 20220314488
    Abstract: The disclosure relates to methods of fabricating of ceramic structures, and more particularly to methods of fabricating ceramic structures having profiled surfaces and more particularly to methods of fabrication of ceramic mirror blanks. In one embodiment, a method of forming a shaped ceramic article, includes: forming, via one of a cold-pressing process or pressure casting process, a green ceramic article comprising a first surface, an opposing second surface and at least one high aspect ratio feature shaped into at least one surface; heating the green featured ceramic part to form a debound featured ceramic part; and densifying the debound featured ceramic part via one of a pressureless sintering process or a hot-pressing process.
    Type: Application
    Filed: March 25, 2022
    Publication date: October 6, 2022
    Inventors: Bethany Rose Conway, Robin May Force, James Scott Sutherland, James William Zimmermann
  • Patent number: 11420293
    Abstract: Methods of reshaping ferrules used in optical fiber cables assemblies are disclosed. The reshaping methods reduce a core-to-ferrule concentricity error (E), which improves coupling efficiency and optical transmission. The methods include measuring a true center of the ferrule, wherein the true center is based on an outer surface of the ferrule; and reshaping at least a portion of the ferrule to change the true center of the ferrule, wherein the reshaping includes enlarging a portion of the ferrule. A variety of reshaping techniques are also disclosed.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: August 23, 2022
    Assignee: Corning Optical Communications LLC
    Inventors: Dana Craig Bookbinder, Boyang Lin, Garrett Andrew Piech, Steven Ross Sims, James Scott Sutherland, Michael Brian Webb, Elvis Alberto Zambrano
  • Patent number: 11419483
    Abstract: An endoscope add-on assembly adapted to be attached to a target endoscope. The assembly includes an ultrasound imaging sub-assembly, including a communications cable connected to an ultrasound imaging head and an imaging head movement sub-assembly, including a conduit, holding a tension member that is attached to the ultrasound imaging head. Further included are connective elements, adapted to permit the endoscope add-on assembly to be attached to the target endoscope. Finally, the imaging head movement sub-assembly is detachable from the ultrasound imaging sub-assembly, thereby permitting the imaging head movement subassembly to be processed separately from the ultrasound imaging sub-assembly, after use.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: August 23, 2022
    Assignee: EndoSound, Inc.
    Inventors: Stephen E. Steinberg, Scott Sutherland Corbett, III
  • Patent number: 11415754
    Abstract: Fiber array spacers, optical fiber assemblies, optical assemblies, and methods for fabricating optical assemblies are disclosed. In one embodiment, an optical fiber assembly includes a fiber array spacer and a fiber ribbon having an array of optical fibers. The fiber array spacer has an array of spacer fibers, wherein individual spacer fibers of the array of spacer fibers are bonded to one another, and a diameter of the individual spacer fibers determines a height of the fiber array spacer. Each optical fiber of the array of optical fibers has an glass portion. The glass portion of each optical fiber is bonded to the fiber array spacer such that a longitudinal axis of the individual spacer fibers is transverse to a longitudinal axis of individual optical fibers of the fiber ribbon.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: August 16, 2022
    Assignee: Corning Incorporated
    Inventors: Douglas Llewellyn Butler, James Scott Sutherland
  • Patent number: 11415753
    Abstract: A optoelectronic assembly is provided including a photonic integrated circuit (PIC) including at least one electronic connection element and plurality of waveguides disposed on a PIC face, a printed circuit board (PCB) including at least one PCB electronic connection element, which is complementary to the at least one electronic connection element of the PIC and the PIC is configured to be flip chip mounted to the PCB, a lidless fiber array unit including a support substrate having a substantially flat first surface and a signal fiber array including a plurality of optical fibers supported on the first surface, and an alignment substrate disposed on the PIC face and configured to align the plurality of optical fibers of the signal fiber array with the plurality of waveguides.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: August 16, 2022
    Assignee: Corning Research & Development Corporation
    Inventor: James Scott Sutherland
  • Patent number: 11387374
    Abstract: A method for assembling an optoelectronic package assembly includes engaging a connector holder with a substrate, the connector holder defining an engagement feature and the substrate including optical waveguides, engaging a connector of a fiber array unit with the engagement feature the connector holder where the engagement feature retains the connector and where the fiber array unit includes the connector and optical fibers coupled to the connector, optically coupling the optical fibers to the optical waveguides of the substrate, heating the connector holder, the fiber array unit, the substrate, and a solder positioned between the substrate and a base substrate, where the heating is sufficient to melt the solder, and cooling the solder to couple the substrate to the base substrate.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: July 12, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Douglas Llewellyn Butler, James Scott Sutherland
  • Patent number: 11372169
    Abstract: Waveguide substrates, waveguide substrate assemblies, and methods for fabricating waveguide substrates are disclosed. In one embodiment, a waveguide substrate includes an input edge, an output edge, and at least one waveguide within the waveguide substrate. The waveguide substrate further includes at least one input alignment feature within the input edge adjacent to the input end of the at least one waveguide, wherein the at least one input alignment feature is fabricated from a material of the waveguide substrate. The waveguide substrate may also include at least one output alignment feature within the input edge adjacent to the output end of the at least one waveguide, wherein the at least one output alignment feature is fabricated from the material of the waveguide substrate.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: June 28, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Alan Frank Evans, Micah Colen Isenhour, Christopher Paul Lewallen, James Scott Sutherland
  • Publication number: 20220196473
    Abstract: Raman analysis systems are partitioned to provide for cost-effective flame resistance and explosion resistance, including relatively small enclosures associated with particular subsystems. One or more of an excitation source, spectrograph and/or controller are disposed in separate, flame-resistant or explosion-resistant enclosures. A remote optical measurement probe may also be disposed in a separate flame-resistant or explosion-resistant enclosure. A grating and a detector of the spectrograph may be disposed in separate enclosures, with sealed windows therebetween to deliver a Raman spectral signal from the optical grating to the detector. The sealed window of the detector enclosure may serve the dual purpose of maintaining flame resistance or explosion resistance while maintaining cooling within the enclosure. Wireless interfaces may be used for communications between the enclosures where practical to reduce or eliminate physical electrical feedthroughs.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 23, 2022
    Inventors: Scott Sutherland, Manfred Jagiella, Joseph Slater
  • Publication number: 20220128767
    Abstract: Waveguide connector assemblies having a clamshell shell housing and methods of assembling a waveguide module assembly are disclosed. In one embodiment, a waveguide module assembly includes a first shell housing, and a second shell housing coupled to the first shell housing. The first shell housing and the second shell housing define a cavity. The waveguide module assembly further includes a waveguide substrate including at least one waveguide, a first surface, and a second surface opposite the first surface. The waveguide substrate is at least partially disposed within the cavity such that at least a portion of the first surface and at least a portion of the second surface are covered by at least one of the first shell housing and the second shell housing.
    Type: Application
    Filed: January 11, 2022
    Publication date: April 28, 2022
    Inventors: Alan Frank Evans, James Scott Sutherland
  • Patent number: 11297815
    Abstract: The invention is an automatic rod holder with a frame and two opposed clamping jaws pivotally connected to the frame by parallel axes of rotation such that the clamping jaws exhibit a range of motion between a closed configuration and an open configuration, wherein the closed configuration has a longitudinal opening defined by opposing concave portions of the clamping jaws configured to retain a rod.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: April 12, 2022
    Assignee: BURNEWIIN INC.
    Inventors: Scott Sutherland, David Carr
  • Publication number: 20220082759
    Abstract: Optical fiber photonic integrated chip connector interfaces and photonic integrated chip assemblies utilizing low-profile optical fibers and methods thereof are disclosed. In one embodiment, an optical fiber photonic integrated chip (PIC) connector interface includes at least one low-profile optical fiber having an end face, at least one core, and a cladding layer, wherein the end face is non-rotationally symmetric with respect to the at least one core, and the cladding layer includes at least one minimum perimeter point that is a minimum distance from the at least one core as compared to remaining perimeter points of the cladding. The PIC connector interface further includes an interconnect substrate including a fiber mounting surface, and a mechanical coupling surface. The at least one low-profile optical fiber is disposed on the fiber mounting surface such that one or more surfaces of the cladding defining the at least one minimum perimeter point faces away from the fiber mounting surface.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 17, 2022
    Inventors: Douglas Llewellyn Butler, Alan Frank Evans, James Scott Sutherland
  • Patent number: 11256042
    Abstract: Waveguide substrate, waveguide substrate assemblies and methods of fabricating waveguide substrates having various waveguide routing schemes are disclosed. In one embodiment, a waveguide substrate includes a first surface and a second surface, and a plurality of waveguides within the waveguide substrate. The plurality of waveguides defines a plurality of inputs at the first surface. A subset of the plurality of waveguides extends to the second surface to at least partially define a plurality of outputs at the second surface. In one waveguide routing scheme, at least one branching waveguide extends between one of the first surface and the second surface to a surface other than the first surface and the second surface. Another waveguide routing scheme arranges the plurality of waveguides into optical receive-transmit pairs for duplex pairing of optical signals.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: February 22, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Alan Frank Evans, Christian Fiebig, Claudio Mazzali, James Scott Sutherland
  • Patent number: 11247932
    Abstract: The liquid-assisted micromachining methods include methods of processing a substrate made of a transparent dielectric material. A working surface of the substrate is placed in contact with a liquid-assist medium that comprises fluorine. A focused pulsed laser beam is directed through a first substrate surface and through the opposite working surface to form a focus spot in the liquid-assist medium. The focus spot is then moved over a motion path from its initial position in the liquid-assist medium through the substrate body in the general direction from the working surface to the first surface to create a modification of the transparent dielectric material that defines in the body a core portion. The core portion is removed to form the substrate feature, which can be a through or closed fiber hole that supports one or more optical fibers. Optical components formed using the processed substrate are also disclosed.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: February 15, 2022
    Assignee: Corning Incorporated
    Inventors: Jeffery Alan DeMeritt, Davide Domenico Fortusini, Andrey Kobyakov, David Mark Lance, Leonard Thomas Masters, Ulrich Wilhelm Heinz Neukirch, Alexander Mikhailovich Streltsov, James Scott Sutherland
  • Patent number: 11249257
    Abstract: Ferrule assemblies having a lens array are disclosed. In one embodiment, a ferrule assembly includes a ferrule body and a fiber array ferrule. The ferrule body includes a first end face and a second end face, at least one cavity for receiving one or more optical fibers disposed between the first end face and the second end face, and at least one body alignment feature at an outer surface of the body. The fiber array ferrule includes a first end face and a second end face, an array of alignment holes extending between the first end face and the second end face, and at least one ferrule alignment feature at an outer perimeter of the fiber array ferrule. The second end face of the fiber array ferrule is coupled to the first end face of the body.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: February 15, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Jeffery Alan DeMeritt, James Scott Sutherland
  • Patent number: 11204466
    Abstract: Optical fiber photonic integrated chip connector interfaces and photonic integrated chip assemblies utilizing low-profile optical fibers and methods thereof are disclosed. In one embodiment, an optical fiber photonic integrated chip (PIC) connector interface includes at least one low-profile optical fiber having an end face, at least one core, and a cladding layer, wherein the end face is non-rotationally symmetric with respect to the at least one core, and the cladding layer includes at least one minimum perimeter point that is a minimum distance from the at least one core as compared to remaining perimeter points of the cladding. The PIC connector interface further includes an interconnect substrate including a fiber mounting surface, and a mechanical coupling surface. The at least one low-profile optical fiber is disposed on the fiber mounting surface such that one or more surfaces of the cladding defining the at least one minimum perimeter point faces away from the fiber mounting surface.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: December 21, 2021
    Assignee: Corning Research & Development Corporation
    Inventors: Douglas Llewellyn Butler, Alan Frank Evans, James Scott Sutherland