Patents by Inventor Scott T. Becker

Scott T. Becker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200381429
    Abstract: An integrated circuit includes a gate electrode level region that includes a plurality of linear-shaped conductive structures. Each of the plurality of linear-shaped conductive structures is defined to extend lengthwise in a first direction. Some of the plurality of linear-shaped conductive structures form one or more gate electrodes of corresponding transistor devices. A local interconnect conductive structure is formed between two of the plurality of linear-shaped conductive structures so as to extend in the first direction along the two of the plurality of linear-shaped conductive structures.
    Type: Application
    Filed: August 4, 2020
    Publication date: December 3, 2020
    Inventors: Michael C. Smayling, Scott T. Becker
  • Publication number: 20200295044
    Abstract: A first conductive structure forms gate electrodes of a first transistor of a first transistor type and a first transistor of a second transistor type. A second conductive structure forms a gate electrode of a second transistor of the first transistor type. A third conductive structure forms a gate electrode of a second transistor of the second transistor type. A fourth conductive structure forms a gate electrode of a third transistor of the first transistor type. A fifth conductive structure forms a gate electrode of a third transistor of the second transistor type. A sixth conductive structure forms gate electrodes of a fourth transistor of the first transistor type and a fourth transistor of the second transistor type. The second and third transistors of the first transistor type and the second and third transistors of the second transistor type are electrically connected to form a cross-coupled transistor configuration.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 10734383
    Abstract: An integrated circuit includes a gate electrode level region that includes a plurality of linear-shaped conductive structures. Each of the plurality of linear-shaped conductive structures is defined to extend lengthwise in a first direction. Some of the plurality of linear-shaped conductive structures form one or more gate electrodes of corresponding transistor devices. A local interconnect conductive structure is formed between two of the plurality of linear-shaped conductive structures so as to extend in the first direction along the two of the plurality of linear-shaped conductive structures.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: August 4, 2020
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 10727252
    Abstract: A first conductive structure forms gate electrodes of a first transistor of a first transistor type and a first transistor of a second transistor type. A second conductive structure forms a gate electrode of a second transistor of the first transistor type. A third conductive structure forms a gate electrode of a second transistor of the second transistor type. A fourth conductive structure forms a gate electrode of a third transistor of the first transistor type. A fifth conductive structure forms a gate electrode of a third transistor of the second transistor type. A sixth conductive structure forms gate electrodes of a fourth transistor of the first transistor type and a fourth transistor of the second transistor type. The second and third transistors of the first transistor type and the second and third transistors of the second transistor type are electrically connected to form a cross-coupled transistor configuration.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: July 28, 2020
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 10658385
    Abstract: A first PMOS transistor is defined by a gate electrode extending along a first gate electrode track. A second PMOS transistor is defined by a gate electrode extending along a second gate electrode track. A first NMOS transistor is defined by a gate electrode extending along a third gate electrode track. A second NMOS transistor is defined by a gate electrode extending along a fourth gate electrode track. The gate electrodes of the first PMOS transistor and the first NMOS transistor are electrically connected to a first gate node. The gate electrodes of the second PMOS transistor and the second NMOS transistor are electrically connected to a second gate node. Each of the first PMOS transistor, the first NMOS transistor, the second PMOS transistor, and the second NMOS transistor has a respective diffusion terminal electrically connected to a common output node.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 19, 2020
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 10651200
    Abstract: A first PMOS transistor is defined by a gate electrode extending along a first gate electrode track. A second PMOS transistor is defined by a gate electrode extending along a second gate electrode track. A first NMOS transistor is defined by a gate electrode extending along the second gate electrode track. A second NMOS transistor is defined by a gate electrode extending along a third gate electrode track. The gate electrodes of the first PMOS transistor and the first NMOS transistor are electrically connected to a first gate node. The gate electrodes of the second PMOS transistor and the second NMOS transistor are electrically connected to a second gate node. Each of the first PMOS transistor, the first NMOS transistor, the second PMOS transistor, and the second NMOS transistor has a respective diffusion terminal electrically connected to a common output node.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 12, 2020
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Publication number: 20200035663
    Abstract: A cell circuit and corresponding layout is disclosed to include linear-shaped diffusion fins defined to extend over a substrate in a first direction so as to extend parallel to each other. Each of the linear-shaped diffusion fins is defined to project upward from the substrate along their extent in the first direction. A number of gate level structures are defined to extend in a conformal manner over some of the number of linear-shaped diffusion fins. Portions of each gate level structure that extend over any of the linear-shaped diffusion fins extend in a second direction that is substantially perpendicular to the first direction. Portions of each gate level structure that extend over any of the linear-shaped diffusion fins form gate electrodes of a corresponding transistor. The diffusion fins and gate level structures can be placed in accordance with a diffusion fin virtual grate and a gate level virtual grate, respectively.
    Type: Application
    Filed: October 4, 2019
    Publication date: January 30, 2020
    Inventor: Scott T. Becker
  • Patent number: 10446536
    Abstract: A cell circuit and corresponding layout is disclosed to include linear-shaped diffusion fins defined to extend over a substrate in a first direction so as to extend parallel to each other. Each of the linear-shaped diffusion fins is defined to project upward from the substrate along their extent in the first direction. A number of gate level structures are defined to extend in a conformal manner over some of the number of linear-shaped diffusion fins. Portions of each gate level structure that extend over any of the linear-shaped diffusion fins extend in a second direction that is substantially perpendicular to the first direction. Portions of each gate level structure that extend over any of the linear-shaped diffusion fins form gate electrodes of a corresponding transistor. The diffusion fins and gate level structures can be placed in accordance with a diffusion fin virtual grate and a gate level virtual grate, respectively.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: October 15, 2019
    Assignee: Tela Innovations, Inc.
    Inventor: Scott T. Becker
  • Patent number: 10230377
    Abstract: An exclusive-or circuit includes a pass gate controlled by a second input node. The pass gate is connected to pass through a version of a logic state present at a first input node to an output node when so controlled. A transmission gate is controlled by the first input node. The transmission gate is connected to pass through a version of the logic state present at the second input node to the output node when so controlled. Pullup logic is controlled by both the first and second input nodes. The pullup logic is connected to drive the output node low when both the first and second input nodes are high. An exclusive-nor circuit is defined similar to the exclusive-or circuit, except that the pullup logic is replaced by pulldown logic which is connected to drive the output node high when both the first and second input nodes are high.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: March 12, 2019
    Assignee: Tela Innovations, Inc.
    Inventor: Scott T. Becker
  • Patent number: 10217763
    Abstract: An integrated circuit includes a first gate electrode track and a second gate electrode track. The first gate electrode track includes a first gate electrode feature that forms an n-channel transistor as it crosses an n-diffusion region. The first gate electrode track does not cross a p-diffusion region. The second gate electrode track includes a second gate electrode feature that forms a p-channel transistor as it crosses a p-diffusion region. The second gate electrode track does not cross an n-diffusion region. The integrated circuit also includes a linear shaped conductor that crosses both the first and second gate electrode features in a reference direction perpendicular to the first and second gate electrode tracks. The linear shaped conductor provides electrical connection between the first and second gate electrode features.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: February 26, 2019
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 10186523
    Abstract: An integrated circuit includes a first gate electrode track and a second gate electrode track. The first gate electrode track includes a first gate electrode feature that forms an n-channel transistor as it crosses an n-diffusion region. The first gate electrode track does not cross a p-diffusion region. The second gate electrode track includes a second gate electrode feature that forms a p-channel transistor as it crosses a p-diffusion region. The second gate electrode track does not cross an n-diffusion region. The integrated circuit also includes a linear shaped conductor that crosses both the first and second gate electrode features in a reference direction perpendicular to the first and second gate electrode tracks. The linear shaped conductor provides electrical connection between the first and second gate electrode features.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 22, 2019
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20190019810
    Abstract: An integrated circuit includes a first gate electrode track and a second gate electrode track. The first gate electrode track includes a first gate electrode feature that forms an n-channel transistor as it crosses an n-diffusion region. The first gate electrode track does not cross a p-diffusion region. The second gate electrode track includes a second gate electrode feature that forms a p-channel transistor as it crosses a p-diffusion region. The second gate electrode track does not cross an n-diffusion region. The integrated circuit also includes a linear shaped conductor that crosses both the first and second gate electrode features in a reference direction perpendicular to the first and second gate electrode tracks. The linear shaped conductor provides electrical connection between the first and second gate electrode features.
    Type: Application
    Filed: August 31, 2018
    Publication date: January 17, 2019
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20180374871
    Abstract: An integrated circuit includes a first gate electrode track and a second gate electrode track. The first gate electrode track includes a first gate electrode feature that forms an n-channel transistor as it crosses an n-diffusion region. The first gate electrode track does not cross a p-diffusion region. The second gate electrode track includes a second gate electrode feature that forms a p-channel transistor as it crosses a p-diffusion region. The second gate electrode track does not cross an n-diffusion region. The integrated circuit also includes a linear shaped conductor that crosses both the first and second gate electrode features in a reference direction perpendicular to the first and second gate electrode tracks. The linear shaped conductor provides electrical connection between the first and second gate electrode features.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20180374873
    Abstract: An integrated circuit includes a first gate electrode track and a second gate electrode track. The first gate electrode track includes a first gate electrode feature that forms an n-channel transistor as it crosses an n-diffusion region. The first gate electrode track does not cross a p-diffusion region. The second gate electrode track includes a second gate electrode feature that forms a p-channel transistor as it crosses a p-diffusion region. The second gate electrode track does not cross an n-diffusion region. The integrated circuit also includes a linear shaped conductor that crosses both the first and second gate electrode features in a reference direction perpendicular to the first and second gate electrode tracks. The linear shaped conductor provides electrical connection between the first and second gate electrode features.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20180374872
    Abstract: An integrated circuit includes a first gate electrode track and a second gate electrode track. The first gate electrode track includes a first gate electrode feature that forms an n-channel transistor as it crosses an n-diffusion region. The first gate electrode track does not cross a p-diffusion region. The second gate electrode track includes a second gate electrode feature that forms a p-channel transistor as it crosses a p-diffusion region. The second gate electrode track does not cross an n-diffusion region. The integrated circuit also includes a linear shaped conductor that crosses both the first and second gate electrode features in a reference direction perpendicular to the first and second gate electrode tracks. The linear shaped conductor provides electrical connection between the first and second gate electrode features.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 10141334
    Abstract: Gate structures are positioned within a region in accordance with a gate horizontal grid that includes at least seven gate gridlines separated from each other by a gate pitch of less than or equal to about 193 nanometers. Each gate structure has a substantially rectangular shape with a width of less than or equal to about 45 nanometers and is positioned to extend lengthwise along a corresponding gate gridline. Each gate gridline has at least one gate structure positioned thereon. A first-metal layer is formed above top surfaces of the gate structures within the region and includes first-metal structures positioned in accordance with a first-metal vertical grid that includes at least eight first-metal gridlines. Each first-metal structure has a substantially rectangular shape and is positioned to extend along a corresponding first-metal gridline. At least six contact structures of substantially rectangular shape contact the at least six gate structures.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: November 27, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 10141335
    Abstract: Gate structures formed from substantially rectangular shaped gate structure layout shapes positioned on a gate horizontal grid having at least seven gate gridlines within a region. A first-metal layer including first-metal structures formed from substantially rectangular shaped first-metal structure layout shapes is formed above top surfaces of the gate structures within the region. The first-metal structure layout shapes are positioned on a first-metal vertical grid having at least eight first-metal gridlines. At least six contact structures are formed from substantially rectangular shaped contact structure layout shapes in physical and electrical contact with corresponding ones of at least six of the gate structures. A total number of first-transistor-type-only gate structures equals a total number of second-transistor-type-only gate structures within the region.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: November 27, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 10074640
    Abstract: A method is disclosed for defining a multiple patterned cell layout for use in an integrated circuit design. A layout is defined for a level of a cell in accordance with a dynamic array architecture so as to include a number of layout features. The number of layout features are linear-shaped and commonly oriented. The layout is split into a number of sub-layouts for the level of the cell. Each of the number of layout features in the layout is allocated to any one of the number of sub-layouts. Also, the layout is split such that each sub-layout is independently fabricatable. The sub-layouts for the level of the cell are stored on a computer readable medium.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: September 11, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Publication number: 20180204795
    Abstract: A layer of a mask material is deposited on a substrate. A beam of energy is scanned across the mask material in a rasterized linear pattern and in accordance with a scan pitch that is based on a pitch of conductive structure segments to be formed on the substrate. The beam of energy is defined to transform the mask material upon which the beam of energy is incident into a removable state. During scanning the beam of energy across the mask material, the beam of energy is turned on at locations where a conductive structure is to be formed on the substrate, and the beam of energy is turned off at locations where a conductive structure is not to be formed on the substrate.
    Type: Application
    Filed: March 13, 2018
    Publication date: July 19, 2018
    Inventors: Michael C. Smayling, Scott T. Becker
  • Publication number: 20180196909
    Abstract: A semiconductor chip is defined to include a logic block area having a first chip level in which layout features are placed according to a first virtual grate, and a second chip level in which layout features are placed according to a second virtual grate. A rational spatial relationship exists between the first and second virtual grates. A number of cells are placed within the logic block area. Each of the number of cells is defined according to an appropriate one of a number of cell phases. The appropriate one of the number of cell phases causes layout features in the first and second chip levels of a given placed cell to be aligned with the first and second virtual grates as positioned within the given placed cell.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Inventors: Jonathan R. Quandt, Scott T. Becker, Dhrumil Gandhi