Patents by Inventor Sean Barstow

Sean Barstow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8294219
    Abstract: Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: October 23, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Sandra G. Malhotra, Pragati Kumar, Sean Barstow, Tony Chiang, Prashant B. Phatak, Wen Wu, Sunil Shanker
  • Publication number: 20120149164
    Abstract: Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed from resistive-switching metal oxide layers. Metal oxide layers may be formed using sputter deposition at relatively low sputtering powers, relatively low duty cycles, and relatively high sputtering gas pressures. Dopants may be incorporated into a base oxide layer at an atomic concentration that is less than the solubility limit of the dopant in the base oxide. At least one oxidation state of the metal in the base oxide is preferably different than at least one oxidation sate of the dopant. The ionic radius of the dopant and the ionic radius of the metal may be selected to be close to each other. Annealing and oxidation operations may be performed on the resistive switching metal oxides. Bistable metal oxides with relatively large resistivities and large high-state-to-low state resistivity ratios may be produced.
    Type: Application
    Filed: May 19, 2011
    Publication date: June 14, 2012
    Applicant: INTERMOLECULAR, INC.
    Inventors: Pragati Kumar, Sandra G. Malhotra, Sean Barstow, Tony Chiang
  • Publication number: 20120142143
    Abstract: Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.
    Type: Application
    Filed: February 10, 2012
    Publication date: June 7, 2012
    Applicant: Intermolecular, Inc.
    Inventors: Pragati Kumar, Sean Barstow, Sunil Shanker, Tony Chiang
  • Publication number: 20120122291
    Abstract: Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
    Type: Application
    Filed: December 27, 2011
    Publication date: May 17, 2012
    Applicant: INTERMOLECULAR, INC.
    Inventors: Sandra G. Malhotra, Pragati Kumar, Sean Barstow, Tony Chiang, Prashant B. Phatak, Wen Wu, Sunil Shanker
  • Patent number: 8144498
    Abstract: Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or a Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: March 27, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Pragati Kumar, Sandra G. Malhotra, Sean Barstow, Tony Chiang
  • Patent number: 8143092
    Abstract: Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: March 27, 2012
    Inventors: Pragati Kumar, Sean Barstow, Sunil Shanker, Tony Chiang
  • Patent number: 7977153
    Abstract: Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed from resistive-switching metal oxide layers. Metal oxide layers may be formed using sputter deposition at relatively low sputtering powers, relatively low duty cycles, and relatively high sputtering gas pressures. Dopants may be incorporated into a base oxide layer at an atomic concentration that is less than the solubility limit of the dopant in the base oxide. At least one oxidation state of the metal in the base oxide is preferably different than at least one oxidation state of the dopant. The ionic radius of the dopant and the ionic radius of the metal may be selected to be close to each other. Annealing and oxidation operations may be performed on the resistive switching metal oxides. Bistable metal oxides with relatively large resistivities and large high-state-to-low state resistivity ratios may be produced.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: July 12, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Pragati Kumar, Sandra G. Malhotra, Sean Barstow, Tony Chiang
  • Publication number: 20110081748
    Abstract: Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed from resistive-switching metal oxide layers. Metal oxide layers may be formed using sputter deposition at relatively low sputtering powers, relatively low duty cycles, and relatively high sputtering gas pressures. Dopants may be incorporated into a base oxide layer at an atomic concentration that is less than the solubility limit of the dopant in the base oxide. At least one oxidation state of the metal in the base oxide is preferably different than at least one oxidation sate of the dopant. The ionic radius of the dopant and the ionic radius of the metal may be selected to be close to each other. Annealing and oxidation operations may be performed on the resistive switching metal oxides. Bistable metal oxides with relatively large resistivities and large high-state-to-low state resistivity ratios may be produced.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 7, 2011
    Inventors: Pragati Kumar, Sandra G. Malhotra, Sean Barstow, Tony Chiang
  • Patent number: 7863087
    Abstract: Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed from resistive-switching metal oxide layers. Metal oxide layers may be formed using sputter deposition at relatively low sputtering powers, relatively low duty cycles, and relatively high sputtering gas pressures. Dopants may be incorporated into a base oxide layer at an atomic concentration that is less than the solubility limit of the dopant in the base oxide. At least one oxidation state of the metal in the base oxide is preferably different than at least one oxidation sate of the dopant. The ionic radius of the dopant and the ionic radius of the metal may be selected to be close to each other. Annealing and oxidation operations may be performed on the resistive switching metal oxides. Bistable metal oxides with relatively large resistivities and large high-state-to-low state resistivity ratios may be produced.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: January 4, 2011
    Assignee: Intermolecular, Inc
    Inventors: Pragati Kumar, Sandra G. Malhotra, Sean Barstow, Tony Chiang
  • Publication number: 20090227067
    Abstract: Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.
    Type: Application
    Filed: March 9, 2009
    Publication date: September 10, 2009
    Inventors: Pragati Kumar, Sean Barstow, Sunil Shanker, Tony Chiang
  • Publication number: 20090026434
    Abstract: Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
    Type: Application
    Filed: July 24, 2008
    Publication date: January 29, 2009
    Inventors: Sandra G. Malhotra, Pragati Kumar, Sean Barstow, Tony Chiang, Prashant B. Phatak, Wen Wu, Sunil Shanker
  • Publication number: 20080278990
    Abstract: Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or a Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
    Type: Application
    Filed: May 2, 2008
    Publication date: November 13, 2008
    Inventors: Pragati Kumar, Sandra G. Malhotra, Sean Barstow, Tony Chiang
  • Publication number: 20040180292
    Abstract: The present invention relates generally to a method and apparatus for converting a precursor material, preferably organometallic, to a film, preferably metal-containing, that is adherent to at least a portion of a substrate. Both method and apparatus include a pre-conversion step or section, and a step or section for substantial conversion of a portion of material from the pre-conversion step or section into the form of a predetermined pattern, wherein this substantial conversion results in a metal-containing patterned layer on the substrate.
    Type: Application
    Filed: October 29, 2003
    Publication date: September 16, 2004
    Applicant: EKC Technology, Inc.
    Inventors: Wai M. Lee, David J. Maloney, Paul J. Roman, Michael A. Fury, Ross H. Hill, Clifford Henderson, Sean Barstow
  • Patent number: 6696363
    Abstract: The present invention relates generally to a method and apparatus for converting a precursor material, preferably organometallic, to a film, preferably metal-containing, that is adherent to at least a portion of a substrate. Both method and apparatus include a pre-conversion step or section, and a step or section for substantial conversion of a portion of material from the pre-conversion step or section into the form of a predetermined pattern, wherein this substantial conversion results in a metal-containing patterned layer on the substrate.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: February 24, 2004
    Assignee: EKC Technology, Inc.
    Inventors: Wai M. Lee, David J. Maloney, Paul J. Roman, Michael A. Fury, Ross H. Hill, Clifford Henderson, Sean Barstow
  • Publication number: 20020037481
    Abstract: The present invention relates generally to a method and apparatus for converting a precursor material, preferably organometallic, to a film, preferably metal-containing, that is adherent to at least a portion of a substrate. Both method and apparatus include a pre-conversion step or section, and a step or section for substantial conversion of a portion of material from the pre-conversion step or section into the form of a predetermined pattern, wherein this substantial conversion results in a metal-containing patterned layer on the substrate.
    Type: Application
    Filed: June 6, 2001
    Publication date: March 28, 2002
    Inventors: Wai M. Lee, David J. Maloney, Paul J. Roman, Michael A. Fury, Ross H. Hill, Clifford Henderson, Sean Barstow