Patents by Inventor Sean Hart

Sean Hart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913870
    Abstract: Provided are methods and devices for assessing biological particles for use in cell immunotherapy. By utilizing a microfluidic chip device together with optical force measurement and cell imaging, the methods enable comprehensive assessment and characterization of biological particles with regard to morphology, motility, binding affinities, and susceptibility to external forces, including but not limited to, chemical, biochemical, biological, physical and temperature influences. The methods enable the selection and production of biological particles, such as engineered T-cells, for use in immunotherapy and biomanufacturing.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: February 27, 2024
    Assignee: Lumacyte, Inc.
    Inventors: Sean Hart, Colin Hebert
  • Patent number: 11900217
    Abstract: A quantum computer includes a refrigeration system under vacuum including a containment vessel, a qubit chip contained within a refrigerated vacuum environment defined by the containment vessel. The quantum computer further includes a plurality of interior electromagnetic waveguides and a plurality of exterior electromagnetic waveguides. The quantum computer further includes a hermetic connector assembly operatively connecting the interior electromagnetic waveguides to the exterior electromagnetic waveguides while maintaining the refrigerated vacuum environment. The hermetic connector assembly includes an exterior multi-waveguide connector, an interior multi-waveguide connector, and a dielectric plate arranged between and hermetically sealed with the exterior multi-waveguide connector and the interior multi-waveguide connector. The dielectric plate permits electromagnetic energy when carried by the interior and exterior pluralities of electromagnetic waveguides to pass therethrough.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: February 13, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas T. Bronn, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Patent number: 11889770
    Abstract: Techniques for designing and fabricating quantum circuitry, including a coplanar waveguide (CPW), for quantum applications are presented. With regard to a CPW, a central conductor and two return conductor lines can be formed on a dielectric substrate, with one return conductor line on each side of the central conductor and separated from it by a space. The central conductor can have bridge portions that can be raised a desired distance above the substrate and base conductor portions situated between the bridge portions and in contact with the surface of the substrate; and/or portions of the substrate underneath the bridge portions of the central conductor can be removed such that the bridge portions, whether raised or unraised, can be the desired distance above the surface of the remaining substrate, and the base conductor portions can be in contact with other portions of the surface of the substrate that were not removed.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: January 30, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Salvatore Bernardo Olivadese, Sarunya Bangsaruntip, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Sean Hart, Patryk Gumann
  • Patent number: 11879789
    Abstract: Techniques regarding determining the temperature of one or more quantum computing devices are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a temperature component that can determine a temperature of a superconducting resonator based on a frequency shift exhibited by the superconducting resonator due to a change in kinetic inductance with a change in temperature.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: January 23, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Salvatore Bernardo Olivadese, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Sean Hart, Patryk Gumann
  • Patent number: 11875225
    Abstract: A system for transmission of quantum information for quantum error correction includes an ancilla qubit chip including a plurality of ancilla qubits, and a data qubit chip spaced apart from the ancilla qubit chip, the data qubit chip including a plurality of data qubits. The system includes an interposer coupled to the ancilla qubit chip and the data qubit chip, the interposer including a dielectric material and a plurality of superconducting structures formed in the dielectric material. The superconducting structures enable transmission of quantum information between the plurality of data qubits on the data qubit chip and the plurality of ancilla qubits on the ancilla qubit chip via virtual photons for quantum error correction.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: January 16, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas Torleiv Bronn, Daniela Florentina Bogorin, Patryk Gumann, Sean Hart, Salvatore Bernardo Olivadese
  • Publication number: 20230415153
    Abstract: Provided are methods and devices for automated analysis of one or more samples in single or multi-well plates or vessels, wherein the process of automated analysis comprises flow and hydrodynamic, electrokinetic, and optical forces for the analysis and sorting of samples, wherein the samples comprise liquid or particles in microfluidic channels, and wherein the devices comprise an assembly of components that enable processing of a said samples for analytical assessment by fluidic and/or particle based instruments. Microfluidic structures (channels, “T's”, “Y's”, branched “Y's”, wells, and weirs) are described for facilitating sample interaction and observation, sample analysis, sorting, or isolation. Detection can be accomplished using spectroscopic methods including, but not limited to, Raman spectroscopy of single cells and bulk cellular samples (collections of cells; several individuals to hundreds or thousands of cells).
    Type: Application
    Filed: July 11, 2023
    Publication date: December 28, 2023
    Inventors: Sean Hart, Colin Hebert
  • Patent number: 11827216
    Abstract: Methods and apparatus for matching portions of images are described as well as using depth information generated from the matching results. In various embodiments, lower portions of images of a scene area, which are more likely to include objects closer to a vehicle on which cameras are mounted, than are portions of images corresponding to an upper portion of the scene area, are processed and used for depth determination. In this way, depths to objects, which are likely to be closer to the vehicle than objects in the upper portion of the scene area, are determined first and used to control a vehicle reducing the risk of collision as compared to systems where the depth determination of an entire scene is completed before depth information is used for control purposes with the order of processing being such that nearer objects are likely to be detected prior to more distant objects.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: November 28, 2023
    Assignee: Deere & Company
    Inventor: Sean Hart
  • Patent number: 11777478
    Abstract: A quantum circuit includes a first qubit and a second qubit. A bus resonator transmission line is coupled between the first qubit and the second qubit. A readout bus is coupled to the first qubit. A switch is coupled to the bus resonator transmission line between the first qubit and the second qubit.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: October 3, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Salvatore Bernardo Olivadese, Patryk Gumann, Sean Hart, April Carniol
  • Patent number: 11738339
    Abstract: Provided are methods and devices for automated analysis of one or more samples in single or multi-well plates or vessels, wherein the process of automated analysis comprises flow and hydrodynamic, electrokinetic, and optical forces for the analysis and sorting of samples, wherein the samples comprise liquid or particles in microfluidic channels, and wherein the devices comprise an assembly of components that enable processing of a said samples for analytical assessment by fluidic and/or particle based instruments. Microfluidic structures (channels, “T's”, “Y's”, branched “Y's”, wells, and weirs) are described for facilitating sample interaction and observation, sample analysis, sorting, or isolation. Detection can be accomplished using spectroscopic methods including, but not limited to, Raman spectroscopy of single cells and bulk cellular samples (collections of cells; several individuals to hundreds or thousands of cells).
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: August 29, 2023
    Assignee: LUMACYTE, INC.
    Inventors: Sean Hart, Colin Hebert
  • Patent number: 11727295
    Abstract: A superconducting coupling device includes a resonator structure. The resonator structure has a first end configured to be coupled to a first device and a second end configured to be coupled to a second device. A gate is positioned proximal to a portion of the resonator structure. The gate is configured to receive a gate voltage and vary a kinetic inductance of the portion of the resonator based upon the gate voltage. The varying of the kinetic inductance induces the resonator structure to vary a strength of coupling between the first superconducting device and the second superconducting device.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: August 15, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean Hart, Patryk Gumann
  • Publication number: 20230252332
    Abstract: A quantum computer includes a refrigeration system under vacuum including a containment vessel, a qubit chip contained within a refrigerated vacuum environment defined by the containment vessel. The quantum computer further includes a plurality of interior electromagnetic waveguides and a plurality of exterior electromagnetic waveguides. The quantum computer further includes a hermetic connector assembly operatively connecting the interior electromagnetic waveguides to the exterior electromagnetic waveguides while maintaining the refrigerated vacuum environment. The hermetic connector assembly includes an exterior multi-waveguide connector, an interior multi-waveguide connector, and a dielectric plate arranged between and hermetically sealed with the exterior multi-waveguide connector and the interior multi-waveguide connector. The dielectric plate permits electromagnetic energy when carried by the interior and exterior pluralities of electromagnetic waveguides to pass therethrough.
    Type: Application
    Filed: November 15, 2022
    Publication date: August 10, 2023
    Applicant: International Business Machines Corporation
    Inventors: Nicholas T. Bronn, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Publication number: 20230199936
    Abstract: A quantum mechanical circuit includes a substrate; a first electrical conductor and a second electrical conductor provided on the substrate and spaced apart to provide a gap therebetween; and a third electrical conductor to electrically connect the first electrical conductor and the second electrical conductor. The third electrical conductor is a poor thermal conductor.
    Type: Application
    Filed: December 8, 2022
    Publication date: June 22, 2023
    Inventors: Trevor Timpane, Layne A. Berge, Patryk Gumann, Sean Hart, Curtis Eugene Larsen, Michael Good
  • Patent number: 11683996
    Abstract: A superconducting coupling device includes a resonator structure. The resonator structure has a first end configured to be coupled to a first device and a second end configured to be coupled to a second device. The device further includes an electron system coupled to the resonator structure, and a gate positioned proximal to a portion of the electron system. The electron system and the gate are configured to interrupt the resonator structure at one or more predetermined locations forming a switch. The gate is configured to receive a gate voltage and vary an inductance of the electron system based upon the gate voltage. The varying of the inductance induces the resonator structure to vary a strength of coupling between the first device and the second device.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: June 20, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean Hart, Jay M. Gambetta, Patryk Gumann
  • Publication number: 20230188124
    Abstract: A quantum circuit includes a first qubit and a second qubit. A bus resonator transmission line is coupled between the first qubit and the second qubit. A readout bus is coupled to the first qubit. A switch is coupled to the bus resonator transmission line between the first qubit and the second qubit.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 15, 2023
    Inventors: Salvatore Bernardo Olivadese, Patryk Gumann, Sean Hart, April Carniol
  • Patent number: 11674854
    Abstract: Techniques regarding determining and/or analyzing temperature distributions experienced by quantum computer devices during operation are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a region component that can define a plurality of temperature regions from a quantum computing device layout. The computer executable component can also comprise a map component that can generate a map that characterizes a temperature distribution by determining at least one temperature achieved within the plurality of temperature regions during an operation of the quantum computing device layout.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: June 13, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Salvatore Bernardo Olivadese, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Sean Hart, Patryk Gumann
  • Publication number: 20230160808
    Abstract: A microfluidic chip configuration wherein injection occurs in an upwards vertical direction, and fluid vessels are located below the chip in order to minimize particle settling before and at the analysis portion of the chip's channels. The input and fluid flow up through the bottom of the chip, in one aspect using a manifold, which avoids orthogonal re-orientation of fluid dynamics. The contents of the vial are located below the chip and pumped upwards and vertically directly into the first channel of the chip. A long channel extends from the bottom of the chip to near the top of the chip. Then the channel takes a short horizontal turn that nearly negates any influence of cell settling due to gravity and zero flow velocity at the walls. The fluid is pumped up to a horizontal analysis portion that is the highest channel/fluidic point in the chip and thus close to the top of the chip, which results in clearer imaging.
    Type: Application
    Filed: January 23, 2023
    Publication date: May 25, 2023
    Inventors: Sean Hart, Colin Hebert, Christopher Field, Shweta Krishnan
  • Publication number: 20230133709
    Abstract: A gated Josephson junction includes a substrate and a vertical Josephson junction formed on the substrate and extending substantially normal the substrate. The vertical Josephson junction includes a first superconducting layer, a semiconducting layer, and a second superconducting layer. The first superconducting layer, the semiconducting layer, and the second superconducting layer form a stack that is substantially perpendicular to the substrate. The gated Josephson junction includes a gate dielectric layer in contact with the first superconducting layer, the semiconducting layer, and the second superconducting layer at opposing side surfaces of the vertical Josephson junction, and a gate electrically conducting layer in contact with the gate dielectric layer. The gate electrically conducting layer is separated from the vertical Josephson junction by the gate dielectric layer.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Inventors: Devendra K. Sadana, Ning Li, Stephen W. Bedell, Sean Hart, Patryk Gumann
  • Patent number: 11621386
    Abstract: A superconducting coupling device includes a resonator structure. The resonator structure has a first end configured to be coupled to a first device and a second end configured to be coupled to a second device. The device further includes an electron system coupled to the resonator structure, and a gate positioned proximal to a portion of the electron system. The electron system and the gate are configured to interrupt the resonator structure at one or more predetermined locations forming a switch. The gate is configured to receive a gate voltage and vary an inductance of the electron system based upon the gate voltage. The varying of the inductance induces the resonator structure to vary a strength of coupling between the first device and the second device.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: April 4, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean Hart, Jay M. Gambetta, Patryk Gumann
  • Publication number: 20230055578
    Abstract: A system for transmission of quantum information for quantum error correction includes an ancilla qubit chip including a plurality of ancilla qubits, and a data qubit chip spaced apart from the ancilla qubit chip, the data qubit chip including a plurality of data qubits. The system includes an interposer coupled to the ancilla qubit chip and the data qubit chip, the interposer including a dielectric material and a plurality of superconducting structures formed in the dielectric material. The superconducting structures enable transmission of quantum information between the plurality of data qubits on the data qubit chip and the plurality of ancilla qubits on the ancilla qubit chip via virtual photons for quantum error correction.
    Type: Application
    Filed: October 21, 2022
    Publication date: February 23, 2023
    Inventors: Nicholas Torleiv Bronn, Daniela Florentina Bogorin, Patryk Gumann, Sean Hart, Salvatore Bernardo Olivadese
  • Patent number: 11581472
    Abstract: A gated Josephson junction includes a substrate and a vertical Josephson junction formed on the substrate and extending substantially normal the substrate. The vertical Josephson junction includes a first superconducting layer, a semiconducting layer, and a second superconducting layer. The first superconducting layer, the semiconducting layer, and the second superconducting layer form a stack that is substantially perpendicular to the substrate. The gated Josephson junction includes a gate dielectric layer in contact with the first superconducting layer, the semiconducting layer, and the second superconducting layer at opposing side surfaces of the vertical Josephson junction, and a gate electrically conducting layer in contact with the gate dielectric layer. The gate electrically conducting layer is separated from the vertical Josephson junction by the gate dielectric layer.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: February 14, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Devendra K. Sadana, Ning Li, Stephen W. Bedell, Sean Hart, Patryk Gumann