Patents by Inventor Sean MA
Sean MA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11367722Abstract: A nanowire transistor structure has a first device region with a first body of semiconductor material having a first cross-sectional shape. A second device region has a second body with a second cross-sectional shape different from the first cross-sectional shape. The first device section is vertically above or below the second device section with the bodies extending horizontally between a source and drain. A first gate structure is wrapped around the first body and a second gate structure is wrapped around the second body. Differences in the geometries of the nanowires can be used to optimize performance in the first device section independently of the second device section.Type: GrantFiled: September 21, 2018Date of Patent: June 21, 2022Assignee: Intel CorporationInventors: Aaron Lilak, Stephen Cea, Gilbert Dewey, Willy Rachmady, Roza Kotlyar, Rishabh Mehandru, Sean Ma, Ehren Mannebach, Anh Phan, Cheng-Ying Huang
-
Patent number: 11355621Abstract: Techniques and mechanisms for providing functionality of a non-planar device which includes a semiconductor body disposed on a dielectric layer and over an underlying subfin region. In an embodiment, the dielectric layer is disposed between, and adjoins each of, a first semiconductor material of the subfin region and a second semiconductor material of semiconductor body. The dielectric layer is an artefact of fabrication processing wherein an epitaxy of the semiconductor body is grown horizontally along a length of the subfin region. During such epitaxial growth, the dielectric layer prevents vertical growth of the second semiconductor material from the subfin region. Moreover, at least a portion of a dummy gate determines a shape of the semiconductor body. In another embodiment, formation of the semiconductor body is preceded by an etching to remove a section of a fin portion which is disposed over the subfin region.Type: GrantFiled: January 12, 2018Date of Patent: June 7, 2022Assignee: Intel CorporationInventors: Gilbert Dewey, Willy Rachmady, Sean Ma, Nicholas Minutillo, Tahir Ghani, Matthew V. Metz, Cheng-Ying Huang, Anand S. Murthy
-
Patent number: 11335789Abstract: Embodiments herein describe techniques for a thin-film transistor (TFT) above a substrate. The transistor includes a gate electrode above the substrate, and a channel layer above the substrate, separated from the gate electrode by a gate dielectric layer. The transistor further includes a contact electrode above the channel layer and in contact with a contact area of the channel layer. The contact area has a thickness determined based on a Schottky barrier height of a Schottky barrier formed at an interface between the contact electrode and the contact area, a doping concentration of the contact area, and a contact resistance at the interface between the contact electrode and the contact area. Other embodiments may be described and/or claimed.Type: GrantFiled: September 26, 2018Date of Patent: May 17, 2022Assignee: Intel CorporationInventors: Abhishek Sharma, Cory Weber, Van H. Le, Sean Ma
-
Publication number: 20220149208Abstract: Vertical thin film transistors (TFTs) including a gate electrode pillar clad with a gate dielectric. The gate dielectric is further clad with a semiconductor layer. Source or drain metallization is embedded in trenches formed in an isolation dielectric adjacent to separate regions of the semiconductor layer. During TFT operation, biasing of the gate electrode can induce one or more transistor channel within the semiconductor layer, electrically coupling together the source and drain metallization. A width of the channel may be proportional to a height of the gate electrode pillar clad by the semiconductor layer, while a length of the channel may be proportional to the spacing between contacts occupied by the semiconductor layer. In some embodiments, a memory device may include cells comprising a vertical thin film select transistor and a capacitor (1TFT-1C).Type: ApplicationFiled: January 25, 2022Publication date: May 12, 2022Applicant: Intel CorporationInventors: Yih Wang, Abhishek Sharma, Sean Ma, Van H. Le
-
Publication number: 20220140076Abstract: Embodiments herein describe techniques, systems, and method for a semiconductor device. Embodiments herein may present a semiconductor device having a channel area including a channel III-V material, and a source area including a first portion and a second portion of the source area. The first portion of the source area includes a first III-V material, and the second portion of the source area includes a second III-V material. The channel III-V material, the first III-V material and the second III-V material may have a same lattice constant. Moreover, the first III-V material has a first bandgap, and the second III-V material has a second bandgap, the channel III-V material has a channel III-V material bandgap, where the channel material bandgap, the second bandgap, and the first bandgap form a monotonic sequence of bandgaps. Other embodiments may be described and/or claimed.Type: ApplicationFiled: January 14, 2022Publication date: May 5, 2022Inventors: Cheng-Ying HUANG, Tahir GHANI, Jack KAVALIEROS, Anand MURTHY, Harold KENNEL, Gilbert DEWEY, Matthew METZ, Willy RACHMADY, Sean MA, Nicholas MINUTILLO
-
Patent number: 11257904Abstract: Embodiments herein describe techniques, systems, and method for a semiconductor device. Embodiments herein may present a semiconductor device having a channel area including a channel III-V material, and a source area including a first portion and a second portion of the source area. The first portion of the source area includes a first III-V material, and the second portion of the source area includes a second III-V material. The channel III-V material, the first III-V material and the second III-V material may have a same lattice constant. Moreover, the first III-V material has a first bandgap, and the second III-V material has a second bandgap, the channel III-V material has a channel III-V material bandgap, where the channel material bandgap, the second bandgap, and the first bandgap form a monotonic sequence of bandgaps. Other embodiments may be described and/or claimed.Type: GrantFiled: June 29, 2018Date of Patent: February 22, 2022Assignee: Intel CorporationInventors: Cheng-Ying Huang, Tahir Ghani, Jack Kavalieros, Anand Murthy, Harold Kennel, Gilbert Dewey, Matthew Metz, Willy Rachmady, Sean Ma, Nicholas Minutillo
-
Patent number: 11245038Abstract: Vertical thin film transistors (TFTs) including a gate electrode pillar clad with a gate dielectric. The gate dielectric is further clad with a semiconductor layer. Source or drain metallization is embedded in trenches formed in an isolation dielectric adjacent to separate regions of the semiconductor layer. During TFT operation, biasing of the gate electrode can induce one or more transistor channel within the semiconductor layer, electrically coupling together the source and drain metallization. A width of the channel may be proportional to a height of the gate electrode pillar clad by the semiconductor layer, while a length of the channel may be proportional to the spacing between contacts occupied by the semiconductor layer. In some embodiments, a memory device may include cells comprising a vertical thin film select transistor and a capacitor (1TFT-1C).Type: GrantFiled: March 30, 2017Date of Patent: February 8, 2022Assignee: Intel CorporationInventors: Yih Wang, Abhishek Sharma, Sean Ma, Van H. Lee
-
Publication number: 20210159312Abstract: An apparatus is provided which comprises: a plurality of nanowire transistors stacked vertically, wherein each nanowire transistor of the plurality of nanowire transistors comprises a corresponding nanowire of a plurality of nanowires; and a gate stack, wherein the gate stack fully encircles at least a section of each nanowire of the plurality of nanowires.Type: ApplicationFiled: January 8, 2021Publication date: May 27, 2021Applicant: Intel CorporationInventors: Aaron Lilak, Patrick Keys, Sean Ma, Stephen Cea, Rishabh Mehandru
-
Patent number: 10892326Abstract: An apparatus is provided which comprises: a plurality of nanowire transistors stacked vertically, wherein each nanowire transistor of the plurality of nanowire transistors comprises a corresponding nanowire of a plurality of nanowires; and a gate stack, wherein the gate stack fully encircles at least a section of each nanowire of the plurality of nanowires.Type: GrantFiled: March 30, 2017Date of Patent: January 12, 2021Assignee: Intel CorporationInventors: Aaron Lilak, Patrick Keys, Sean Ma, Stephen Cea, Rishabh Mehandru
-
Publication number: 20200411526Abstract: A device is disclosed. The device includes a plurality of capacitors, a transistor connected to each of the plurality of capacitors, and a first dielectric layer and a second dielectric layer on respective adjacent sides of adjacent capacitors of the plurality of capacitors. The first dielectric layer and the second dielectric layer include a top portion and a bottom portion, the top portion of the first dielectric layer and the top portion of the second dielectric layer extend from respective directions and meet at a top portion of a space between the adjacent capacitors, the bottom portion of the first dielectric layer and the bottom portion of the second dielectric layer extend from respective directions and meet at a bottom portion of a space between the adjacent capacitors.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Abhishek SHARMA, Willy RACHMADY, Van H. LE, Travis W. LAJOIE, Urusa ALAAN, Hui Jae YOO, Sean MA, Aaron LILAK
-
Publication number: 20200235013Abstract: Stacked finFET structures including a fin having at least a first layer of semiconductor material stacked over or under a second layer of semiconductor material. The first and second layers may include a Group IV semiconductor material layer and a Group III-V semiconductor material layer, for example. A stacked finFET may include an N-type finFET stacked over or under a P-type finFET, the two finFETs may have channel portions within the different semiconductor material layers. Channel portions of the first and second layers of semiconductor material may be coupled to separate gate electrodes that are vertically aligned. Channel portions of the first and second layers of semiconductor material may be vertically separated by subfin portions of the first and second layers. Different layers of dielectric material adjacent to the subfin portions may improve electrical isolation between the channel portions, for example as a source of fixed charge or impurity dopants.Type: ApplicationFiled: August 24, 2017Publication date: July 23, 2020Applicant: Intel CorporationInventors: Aaron Lilak, Sean Ma, Justin R. Weber, Rishabh Mehandru, Stephen M. Cea, Patrick Morrow, Patrick H. Keys
-
Publication number: 20200227539Abstract: Techniques and mechanisms for providing functionality of a non-planar device which includes a semiconductor body disposed on a dielectric layer and over an underlying subfin region. In an embodiment, the dielectric layer is disposed between, and adjoins each of, a first semiconductor material of the subfin region and a second semiconductor material of semiconductor body. The dielectric layer is an artefact of fabrication processing wherein an epitaxy of the semiconductor body is grown horizontally along a length of the subfin region. During such epitaxial growth, the dielectric layer prevents vertical growth of the second semiconductor material from the subfin region. Moreover, at least a portion of a dummy gate determines a shape of the semiconductor body. In another embodiment, formation of the semiconductor body is preceded by an etching to remove a section of a fin portion which is disposed over the subfin region.Type: ApplicationFiled: January 12, 2018Publication date: July 16, 2020Applicant: Intel CorporationInventors: Gilbert Dewey, Willy Rachmady, Sean Ma, Nicholas Minutillo, Tahir Ghani, Matthew V. Metz, Cheng-Ying Huang, Anand S. Murthy
-
Publication number: 20200105871Abstract: Gate-all-around integrated circuit structures having vertically discrete source or drain structures, and methods of fabricating gate-all-around integrated circuit structures having vertically discrete source or drain structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, the first epitaxial source or drain structure including vertically discrete portions aligned with the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, the second epitaxial source or drain structure including vertically discrete portions aligned with the vertical arrangement of horizontal nanowires.Type: ApplicationFiled: September 28, 2018Publication date: April 2, 2020Inventors: Glenn GLASS, Anand MURTHY, Biswajeet GUHA, Dax M. CRUM, Sean MA, Tahir GHANI, Susmita GHOSE, Stephen CEA, Rishabh MEHANDRU
-
Publication number: 20200098756Abstract: A nanowire transistor structure has a first device region with a first body of semiconductor material having a first cross-sectional shape. A second device region has a second body with a second cross-sectional shape different from the first cross-sectional shape. The first device section is vertically above or below the second device section with the bodies extending horizontally between a source and drain. A first gate structure is wrapped around the first body and a second gate structure is wrapped around the second body. Differences in the geometries of the nanowires can be used to optimize performance in the first device section independently of the second device section.Type: ApplicationFiled: September 21, 2018Publication date: March 26, 2020Applicant: INTEL CORPORATIONInventors: Aaron Lilak, Stephen Cea, Gilbert Dewey, Willy Rachmady, Roza Kotlyar, Rishabh Mehandru, Sean Ma, Ehren Mannebach, Anh Phan, Cheng-Ying Huang
-
Publication number: 20200098875Abstract: Embodiments herein describe techniques for a thin-film transistor (TFT) above a substrate. The transistor includes a contact electrode having a conductive material above the substrate, an epitaxial layer above the contact electrode, and a channel layer including a channel material above the epitaxial layer and above the contact electrode. The channel layer is in contact at least partially with the epitaxial layer. A conduction band of the channel material and a conduction band of a material of the epitaxial layer are substantially aligned with an energy level of the conductive material of the contact electrode. A bandgap of the material of the epitaxial layer is smaller than a bandgap of the channel material. Furthermore, a gate electrode is above the channel layer, and separated from the channel layer by a gate dielectric layer. Other embodiments may be described and/or claimed.Type: ApplicationFiled: September 26, 2018Publication date: March 26, 2020Inventors: Seung Hoon SUNG, Justin WEBER, Matthew METZ, Arnab SEN GUPTA, Abhishek SHARMA, Benjamin CHU-KUNG, Gilbert DEWEY, Charles KUO, Nazila HARATIPOUR, Shriram SHIVARAMAN, Van H. LE, Tahir GHANI, Jack T. KAVALIEROS, Sean MA
-
Publication number: 20200098887Abstract: Embodiments herein describe techniques for a transistor above the substrate. The transistor includes a first gate dielectric layer with a first gate dielectric material above a gate electrode, and a second dielectric layer with a second dielectric material above a portion of the first gate dielectric layer. A first portion of a channel layer overlaps with only the first gate dielectric layer, while a second portion of the channel layer overlaps with the first gate dielectric layer and the second dielectric layer. A first portion of a contact electrode overlaps with the first portion of the channel layer, and overlaps with only the first gate dielectric layer, while a second portion of the contact electrode overlaps with the second portion of the channel layer, and overlaps with the first gate dielectric layer and the second dielectric layer. Other embodiments may be described and/or claimed.Type: ApplicationFiled: September 26, 2018Publication date: March 26, 2020Inventors: Gilbert DEWEY, Van H. LE, Abhishek SHARMA, Jack T. KAVALIEROS, Sean MA, Seung Hoon SUNG, Nazila HARATIPOUR, Tahir GHANI, Justin WEBER, Shriram SHIVARAMAN
-
Publication number: 20200098880Abstract: Embodiments herein describe techniques for a thin-film transistor (TFT) above a substrate. The transistor includes a gate electrode above the substrate, and a channel layer above the substrate, separated from the gate electrode by a gate dielectric layer. The transistor further includes a contact electrode above the channel layer and in contact with a contact area of the channel layer. The contact area has a thickness determined based on a Schottky barrier height of a Schottky barrier formed at an interface between the contact electrode and the contact area, a doping concentration of the contact area, and a contact resistance at the interface between the contact electrode and the contact area. Other embodiments may be described and/or claimed.Type: ApplicationFiled: September 26, 2018Publication date: March 26, 2020Inventors: Abhishek SHARMA, Cory WEBER, Van H. LE, Sean MA
-
Publication number: 20200044095Abstract: Vertical thin film transistors (TFTs) including a gate electrode pillar clad with a gate dielectric. The gate dielectric is further clad with a semiconductor layer. Source or drain metallization is embedded in trenches formed in an isolation dielectric adjacent to separate regions of the semiconductor layer. During TFT operation, biasing of the gate electrode can induce one or more transistor channel within the semiconductor layer, electrically coupling together the source and drain metallization. A width of the channel may be proportional to a height of the gate electrode pillar clad by the semiconductor layer, while a length of the channel may be proportional to the spacing between contacts occupied by the semiconductor layer. In some embodiments, a memory device may include cells comprising a vertical thin film select transistor and a capacitor (1TFT-1C).Type: ApplicationFiled: March 30, 2017Publication date: February 6, 2020Applicant: Intel CorporationInventors: Yih Wang, Abhishek Sharma, Sean Ma, Van H. Lee
-
Publication number: 20200006576Abstract: Embodiments herein describe techniques, systems, and method for a semiconductor device. A semiconductor device may include isolation areas above a substrate to form a trench between the isolation areas. A first buffer layer is over the substrate, in contact with the substrate, and within the trench. A second buffer layer is within the trench over the first buffer layer, and in contact with the first buffer layer. A channel area is above the first buffer layer, above a portion of the second buffer layer that are below a source area or a drain area, and without being vertically above a portion of the second buffer layer. In addition, the source area or the drain area is above the second buffer layer, in contact with the second buffer layer, and adjacent to the channel area. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 29, 2018Publication date: January 2, 2020Inventors: Sean MA, Nicholas MINUTILLO, Cheng-Ying HUANG, Tahir GHANI, Jack KAVALIEROS, Anand MURTHY, Harold KENNEL, Gilbert DEWEY, Matthew METZ, Willy RACHMADY
-
Publication number: 20200006480Abstract: Embodiments herein describe techniques, systems, and method for a semiconductor device. Embodiments herein may present a semiconductor device having a channel area including a channel III-V material, and a source area including a first portion and a second portion of the source area. The first portion of the source area includes a first III-V material, and the second portion of the source area includes a second III-V material. The channel III-V material, the first III-V material and the second III-V material may have a same lattice constant. Moreover, the first III-V material has a first bandgap, and the second III-V material has a second bandgap, the channel III-V material has a channel III-V material bandgap, where the channel material bandgap, the second bandgap, and the first bandgap form a monotonic sequence of bandgaps. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 29, 2018Publication date: January 2, 2020Inventors: Cheng-Ying HUANG, Tahir GHANI, Jack KAVALIEROS, Anand MURTHY, Harold KENNEL, Gilbert DEWEY, Matthew METZ, Willy RACHMADY, Sean MA, Nicholas MINUTILLO