Patents by Inventor Sean P. Anderson

Sean P. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240061172
    Abstract: An arrayed waveguide grating device includes an input coupler configured to receive a light signal and split the light signal into a plurality of output light signals. The device also includes a plurality of waveguides optically connected to the input coupler, each waveguide having a plurality of waveguide portions having respective sensitivities to variance in one or more parameters associated with operating of the optical arrayed grating device. Lengths of the respective portions are determined such that each waveguide applies a respective phase shift to the output light signal that propagates through the waveguide and the plurality of waveguides have at least substantially same change in phase shift with respective changes in the one or more parameters associated with operation of the device. An output coupler is optically connected to the plurality of waveguides to map respective light signals output from the plurality of waveguides to respective focal positions.
    Type: Application
    Filed: November 1, 2023
    Publication date: February 22, 2024
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventor: Sean P. Anderson
  • Publication number: 20230367146
    Abstract: Optical waveguides may include a substrate and a silicon based optical waveguide supported on the substrate. The silicon based optical waveguide may include a central ridge portion and a plurality of spaced apart wing portions connected through connecting portions. The number of wing portions may be greater than two. The central ridge portion may have a central ridge lateral width extent greater than a lateral width extent of at least one of the wing portions. Optical waveguides may include a substrate, a silicon based optical waveguide supported on the substrate, and a concentrator supported on the substrate and positioned within a lateral width extent of the silicon based optical waveguide and outside of a height extent of the silicon based optical waveguide. The optical waveguides may be included as part of an optical modulator.
    Type: Application
    Filed: July 19, 2023
    Publication date: November 16, 2023
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventors: Sean P. Anderson, Hiroyuki Yamazaki
  • Patent number: 11815716
    Abstract: An arrayed waveguide grating device includes an input coupler configured to receive a light signal and split the light signal into a plurality of output light signals. The device also includes a plurality of waveguides optically connected to the input coupler, each waveguide having a plurality of waveguide portions having respective sensitivities to variance in one or more parameters associated with operating of the optical arrayed grating device. Lengths of the respective portions are determined such that each waveguide applies a respective phase shift to the output light signal that propagates through the waveguide and the plurality of waveguides have at least substantially same change in phase shift with respective changes in the one or more parameters associated with operation of the device. An output coupler is optically connected to the plurality of waveguides to map respective light signals output from the plurality of waveguides to respective focal positions.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: November 14, 2023
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventor: Sean P. Anderson
  • Patent number: 11733553
    Abstract: Optical waveguides may include a substrate and a silicon based optical waveguide supported on the substrate. The silicon based optical waveguide may include a central ridge portion and a plurality of spaced apart wing portions connected through connecting portions. The number of wing portions may be greater than two. The central ridge portion may have a central ridge lateral width extent greater than a lateral width extent of at least one of the wing portions. Optical waveguides may include a substrate, a silicon based optical waveguide supported on the substrate, and a concentrator supported on the substrate and positioned within a lateral width extent of the silicon based optical waveguide and outside of a height extent of the silicon based optical waveguide. The optical waveguides may be included as part of an optical modulator.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: August 22, 2023
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventors: Sean P. Anderson, Hiroyuki Yamazaki
  • Patent number: 11675127
    Abstract: Embodiments herein describe optical interposers that utilize waveguides to detect light. For example, in one embodiment, an apparatus is provided that includes an optical detector having a first layer. The first layer includes at least one of polysilicon or amorphous silicon. The first layer forms a diode that includes a p-doped region and an n-doped region. The apparatus further includes a waveguide optically coupled to the diode and disposed on a different layer than the first layer.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: June 13, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Sean P. Anderson, Vipulkumar Patel
  • Publication number: 20230010699
    Abstract: An arrayed waveguide grating device includes an input coupler configured to receive a light signal and split the light signal into a plurality of output light signals. The device also includes a plurality of waveguides optically connected to the input coupler, each waveguide having a plurality of waveguide portions having respective sensitivities to variance in one or more parameters associated with operating of the optical arrayed grating device. Lengths of the respective portions are determined such that each waveguide applies a respective phase shift to the output light signal that propagates through the waveguide and the plurality of waveguides have at least substantially same change in phase shift with respective changes in the one or more parameters associated with operation of the device. An output coupler is optically connected to the plurality of waveguides to map respective light signals output from the plurality of waveguides to respective focal positions.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 12, 2023
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventor: Sean P. Anderson
  • Publication number: 20220334417
    Abstract: Optical waveguides may include a substrate and a silicon based optical waveguide supported on the substrate. The silicon based optical waveguide may include a central ridge portion and a plurality of spaced apart wing portions connected through connecting portions. The number of wing portions may be greater than two. The central ridge portion may have a central ridge lateral width extent greater than a lateral width extent of at least one of the wing portions. Optical waveguides may include a substrate, a silicon based optical waveguide supported on the substrate, and a concentrator supported on the substrate and positioned within a lateral width extent of the silicon based optical waveguide and outside of a height extent of the silicon based optical waveguide. The optical waveguides may be included as part of an optical modulator.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventors: Sean P. Anderson, Hiroyuki Yamazaki
  • Patent number: 11360368
    Abstract: Semiconductor electro-optical modulators which receives an input optical signal and provides a modulated output optical signal based on an input electrical signal are disclosed. The semiconductor electro-optical modulator may comprise at least one electrical transmission line adapted to carry the input electrical signal and a semiconductor electro-optical phase shifter waveguide electrically coupled to the at least one electrical transmission line. An optical path length of the semiconductor electro-optical phase shifter waveguide between a modulation begin plane of the semiconductor electro-optical modulator and a modulation end plane of the semiconductor electro-optical modulator may be greater than an electrical path length of the electrical transmission line between the modulation begin plane of the semiconductor electro-optical modulator and the modulation end plane of the semiconductor electro-optical modulator.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: June 14, 2022
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventors: Sean P. Anderson, Haike Zhu
  • Publication number: 20220057690
    Abstract: Semiconductor electro-optical modulators which receives an input optical signal and provides a modulated output optical signal based on an input electrical signal are disclosed. The semiconductor electro-optical modulator may comprise at least one electrical transmission line adapted to carry the input electrical signal and a semiconductor electro-optical phase shifter waveguide electrically coupled to the at least one electrical transmission line. An optical path length of the semiconductor electro-optical phase shifter waveguide between a modulation begin plane of the semiconductor electro-optical modulator and a modulation end plane of the semiconductor electro-optical modulator may be greater than an electrical path length of the electrical transmission line between the modulation begin plane of the semiconductor electro-optical modulator and the modulation end plane of the semiconductor electro-optical modulator.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 24, 2022
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventors: Sean P. Anderson, Haike Zhu
  • Patent number: 11183603
    Abstract: Embodiments herein describe photonic systems that include a germanium photodetector thermally coupled to a resistive element. Current flowing through the resistive element increases the temperature of the resistive element. Heat from the resistive element increases the temperature of the thermally coupled photodetector. Increasing the temperature of the photodetector increases the responsivity of the photodetector. The bias voltage of the photodetector can be increased to increase the bandwidth of the photodetector. In various embodiments, the photodetector includes at least one waveguide to receive light into the photodetector. Other embodiments include multiple resistive elements thermally coupled to the photodetector.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: November 23, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Igal I. Bayn, Sean P. Anderson
  • Publication number: 20210341671
    Abstract: Embodiments herein describe optical interposers that utilize waveguides to detect light. For example, in one embodiment, an apparatus is provided that includes an optical detector having a first layer. The first layer includes at least one of polysilicon or amorphous silicon. The first layer forms a diode that includes a p-doped region and an n-doped region. The apparatus further includes a waveguide optically coupled to the diode and disposed on a different layer than the first layer.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Inventors: Sean P. ANDERSON, Vipulkumar PATEL
  • Patent number: 11067747
    Abstract: Embodiments herein describe optical interposers that utilize waveguides to detect light. For example, in one embodiment, an apparatus is provided that includes an optical detector having a first layer. The first layer includes at least one of polysilicon or amorphous silicon. The first layer forms a diode that includes a p-doped region and an n-doped region. The apparatus further includes a waveguide optically coupled to the diode and disposed on a different layer than the first layer.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: July 20, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Sean P. Anderson, Vipulkumar Patel
  • Publication number: 20210181436
    Abstract: Disclosed are various embodiments for a multi-tip laser coupler with improved alignment guidance. A photonic integrated circuit (PIC) includes an input interface, an output interface, and a waveguide array. The waveguide array includes a first waveguide, a second waveguide, and a third waveguide. The first waveguide and the third waveguide are coupled to the input interface and are not coupled to the output interface. The second waveguide is coupled to the input interface and the output interface. Further, the second waveguide is positioned parallel to and between the first waveguide and a third waveguide. The second waveguide includes a tapered body such that an output end of the second waveguide coupled to the output interface is wider than an input end of the second waveguide coupled to the input interface.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 17, 2021
    Inventor: Sean P. Anderson
  • Patent number: 10942377
    Abstract: A driver circuit for a Mach-Zehnder modulator is provided that includes a first driver having an input to receive one of an input data or input data complement, and an output to be coupled to a first application voltage node associated with a first arm of a Mach-Zehnder modulator. The driver circuit includes a second driver having an input to receive the other of the input data complement or input data, and an output to be coupled to a second application voltage node associated with the first arm of the Mach-Zehnder modulator. The first driver and the second driver differentially drive the first and second application voltage nodes associated with the first arm of the Mach-Zehnder modulator to result in a voltage swing associated with a voltage applied to the first arm that is twice the supply voltage.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: March 9, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Manohar Bhavsar Nagaraju, Sean P. Anderson, Alexander Christopher Kurylak, Kadaba Lakshmikumar
  • Patent number: 10914892
    Abstract: A photonic device can include an optical detector (e.g., a photodetector) coupled to silicon waveguides. Unlike silicon, germanium is an efficient detector at the wavelength of optical signals typically used for data communication. Instead of directly coupling the waveguide to the germanium, in one embodiment, the waveguide extends below the germanium but is spaced sufficiently away from the germanium so that the optical signal is not transferred. Instead, an optical transfer structure (e.g., a tapered waveguide or an optical grating) is disposed between the germanium and the waveguide. The waveguide first transfers the optical signal into the optical transfer structure which then transfers the optical signal into the germanium.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: February 9, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Igal I. Bayn, Vipulkumar Patel, Prakash B. Gothoskar, Sean P. Anderson
  • Patent number: 10734785
    Abstract: An apparatus, comprising: a silicon substrate; and a quantum dot laser comprising: a base layer of a III-V semiconductor material, bonded with the silicon substrate; and at least one layer grown epitaxially from the base layer, wherein the at least one layer comprises a quantum dot layer. The apparatus further comprises a photonic element, fabricated on the silicon substrate and including a waveguide optically aligned with the quantum dot layer.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 4, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Dominic F. Siriani, Sean P. Anderson, Vipulkumar Patel
  • Patent number: 10734788
    Abstract: A wafer comprising: a silicon substrate; a base layer of a predetermined thickness of a III-V semiconductor material bonded with the silicon substrate; and at least one layer grown on the base layer to form a plurality of quantum dot lasers.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 4, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Dominic F. Siriani, Sean P. Anderson, Vipulkumar Patel
  • Patent number: 10705313
    Abstract: A system and related method and assembly are disclosed. The system comprises one or more optical fibers configured to propagate one or more optical signals. The system further comprises at least a first cylindrical lens element fixedly connected with the one or more optical fibers and configured to expand the one or more optical signals along a predefined dimension. The system further comprises at least a second cylindrical lens element optically coupled with the first cylindrical lens element and configured to condense the expanded one or more optical signals along the predefined dimension.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: July 7, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Vipulkumar Patel, Sean P. Anderson, Weizhuo Li
  • Patent number: 10686527
    Abstract: Improvements in extinguishing optical signals in silicon photonics may be achieved by supplying a test signal of a known characteristics to a Photonic Element (PE) to extinguish the test signal via a first phase shifter and intensity modulator on a first arm of the PE and a second phase shifter and intensity modulator on a second arm of the PE; sweeping through a plurality of voltages at the first intensity modulator to identify a first voltage that is associated with an extinction ratio at an output of the PE that satisfies an induced loss threshold and a second voltage that is associated with an induced loss in the test signal at the output of the PE that satisfies an extinction ratio threshold; and setting the PE to provide an operational voltage to the first intensity modulator based on the first voltage and the second voltage.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: June 16, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Sean P. Anderson, Mark A. Webster
  • Patent number: 10649305
    Abstract: An optical phase shifting arrangement and associated optical switching device and method are disclosed. The optical phase shifting arrangement comprises a first optical phase shifter configured to provide a first phase shift to an optical signal, and a second optical phase shifter configured to provide a second phase shift to the optical signal in addition to the first phase shift. During a predefined period, the first optical phase shifter and the second optical phase shifter are driven such that the second phase shift is substantially complementary to the first phase shift.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: May 12, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Sean P. Anderson, Vipulkumar Patel