Patents by Inventor Sebastian Bohm

Sebastian Bohm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11027278
    Abstract: A microfluidic device includes a microchannel having an interior bounded by a side wall, an inlet, a switching region, and a plurality of outlet channels downstream of the switching region. The microchannel is formed in a microfluidic chip substrate and configured to accommodate a flow of liquid through the microchannel. The microfluidic device includes a valve operatively coupled to the switching region comprising a sealed reservoir. A side passage extends between the reservoir and the interior of the microchannel via an aperture in the side wall and is configured to accommodate a volume of liquid between the interior of the microchannel and the reservoir. The microfluidic device includes an actuator integrated into the microfluidic chip and configured to increase an internal pressure of the reservoir and move at least a portion of the volume of the liquid from the side passage into the microchannel to deflect a portion of the liquid flowing through the microchannel.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: June 8, 2021
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Patent number: 10987040
    Abstract: Systems and methods for applying time-dependent algorithmic compensation functions to data output from a continuous analyte sensor. Some embodiments determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: April 27, 2021
    Assignee: DexCom, Inc.
    Inventors: Michael J. Estes, Stephen J. Vanslyke, Apurv Ullas Kamath, Thomas A. Peyser, Lucas Bohnett, Aarthi Mahalingam, Arturo Garcia, Peter C. Simpson, Anna Leigh Davis, Sebastian Böhm
  • Patent number: 10985804
    Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: April 20, 2021
    Assignee: DexCom, Inc.
    Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
  • Publication number: 20210076989
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: November 18, 2020
    Publication date: March 18, 2021
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20210068720
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: November 18, 2020
    Publication date: March 11, 2021
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10932709
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: March 2, 2021
    Assignee: DEXCOM, INC.
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Patent number: 10937642
    Abstract: The invention relates to the operation of an energy-focusing and solid-angle-focusing reflector for time-of-flight mass spectrometers with pulsed ion acceleration into a flight tube, e.g. from an ion source with ionization by matrix-assisted laser desorption (MALDI). The objective of the invention is to generate high mass resolution in wide mass ranges up to high masses above eight kilodaltons by varying at least one operating voltage on one of the diaphragms of the reflector which can be varied according to a suitable time function during the spectrum acquisition. It may also be advantageous to adapt the operation of the accelerating voltages in the starting region of the ions accordingly. These measures make it possible to achieve a mass resolution much higher than R=100,000 in a wide mass range extending up to and above eight kilodaltons.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: March 2, 2021
    Inventors: Sebastian Böhm, Andreas Haase
  • Publication number: 20210038128
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 11, 2021
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20210038129
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 11, 2021
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Patent number: 10908114
    Abstract: Systems and methods for compensating for effects of temperature on implantable sensors are provided. In some embodiments, systems and methods are provided for measuring a temperature to determine a change in temperature in a sensor environment. In certain embodiments, a temperature compensation factor is determined based on a change in temperature of the sensor environment. The temperature compensation factor can be used in processing raw data of an analyte signal to report a more accurate analyte concentration.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: February 2, 2021
    Assignee: DexCom, Inc.
    Inventors: Michael J. Estes, Jennifer Blackwell, Sebastian Bohm, Robert J. Boock, Jack Pryor, Peter C. Simpson, Matthew D. Wightlin
  • Publication number: 20210015407
    Abstract: Various examples are directed to a glucose sensor comprising a working electrode to support an oxidation reaction and a reference electrode to support a redox reaction. The reference electrode may comprise silver and silver chloride. The Glucose sensor may also comprise an anti-mineralization agent positioned at the reference electrode to reduce formation of calcium carbonate at the reference electrode.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 21, 2021
    Inventors: Sebastian Bohm, Wenjie Lan, Thomas Robert Porter, Daiting Rong, Jason Halac
  • Publication number: 20210000394
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20200375457
    Abstract: Systems, methods, apparatuses, and devices, for the wireless communication of analyte data are provided. In some embodiments, a method and calibration station for calibrating a continuous analyte sensor system is provided. Methods and testing systems for testing a continuous analyte sensor system is provided. Continuous analyte sensor systems, display devices and peripheral devices configured for wireless communication of analyte, connection, alarm and/or alert data and associated methods are provided.
    Type: Application
    Filed: May 22, 2020
    Publication date: December 3, 2020
    Inventors: Robert Patrick Van Tassel, John Francis Loughlin, Sean S. Nihalani, James Stephen Amidei, Stephen Alan Reichert, Sebastian Bohm, Krishna Prashant Daita, Brian Christopher Smith, Michael A. Ploof, Benjamin Elrod West, Mark S. Dervaes, Vincent P. Crabtree, William A. Pender, Douglas William Burnette
  • Publication number: 20200375455
    Abstract: Systems, methods, apparatuses, and devices, for the wireless communication of analyte data are provided. In some embodiments, a method and calibration station for calibrating a continuous analyte sensor system is provided. Methods and testing systems for testing a continuous analyte sensor system is provided. Continuous analyte sensor systems, display devices and peripheral devices configured for wireless communication of analyte, connection, alarm and/or alert data and associated methods are provided.
    Type: Application
    Filed: May 22, 2020
    Publication date: December 3, 2020
    Inventors: Robert Patrick Van Tassel, John Francis Loughlin, Sean S. Nihalani, James Stephen Amidei, Stephen Alan Reichert, Sebastian Bohm, Krishna Prashant Daita, Brian Christopher Smith, Michael A. Ploof, Benjamin Elrod West, Mark S. Dervaes, Vincent P. Crabtree, William A. Pender, Douglas William Burnette
  • Patent number: 10835161
    Abstract: A transcutaneous sensor device configured for continuously measuring analyte concentrations in a host is provided. In some embodiments, the transcutaneous sensor device 100 comprises an in vivo portion 160 configured for insertion under the skin 180 of the host and an ex vivo portion 170 configured to remain above the surface of the skin 180 of the host after sensor insertion of the in vivo portion. The in vivo portion may comprise a tissue piercing element 110 configured for piercing the skin 180 of the host and a sensor body 120 comprising a material or support member 130 that provides sufficient column strength to allow the sensor body to be pushable in a host tissue without substantial buckling. The ex vivo portion 170 may be configured to comprise (or operably connect to) a sensor electronics unit and may comprise a mounting unit 150. Also described here are various configurations of the sensor body and the tissue piercing element that may be used to protect the membrane of the sensor body.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: November 17, 2020
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Sebastian Böhm, James H. Brauker, Paul V. Neale
  • Patent number: 10835162
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: November 17, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10827955
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 10, 2020
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Publication number: 20200343941
    Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
  • Publication number: 20200330006
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Patent number: 10796896
    Abstract: The invention relates to time-of-flight mass spectrometers with pulsed ionization of samples, for example by matrix-assisted laser desorption (MALDI), where the samples are located on a sample support and are irradiated and ionized one after the other in a grid by a position-controlled desorption beam. An ion-optical puller lens arrangement is positioned in front of the sample support, with at least one of the lens diaphragms in the arrangement being subdivided into segments, and a voltage supply being able to supply the segments, or some of them, with different voltages, depending on the impact position of the desorption beam on the support plate. It is then possible to virtually shift the effective ion-optical focusing center of the lens away from the axis, and to focus an ion beam, which is generated off the real lens axis, into a beam which runs essentially parallel to the real lens axis, with no time phase shift for ions of the same mass.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: October 6, 2020
    Inventor: Sebastian Böhm