Patents by Inventor Sebastian Bohm
Sebastian Bohm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240355610Abstract: The disclosure relates to devices and methods for the spectrometric analysis of sample material located on a sample support, and in particular on a flat sample support plate, using axial time-of-flight analysis. One operating mode of the devices and methods comprises an adjustment of the pulse focal position for the abrupt ablation and/or abrupt desorption of sample material in a z-direction that is perpendicular to a tangential plane at the location of ablation and/or desorption at the sample support, and the selection of a suitable setting for an acceleration with time lag of the ablated and/or desorbed and ionized sample material onto a flight path. It can be particularly advantageous to use these devices and methods in mass spectrometry imaging (MSI). The devices and methods can, in particular, be used with laser desorption/ionization (LDI) and specifically matrix-assisted laser desorption/ionization (MALDI).Type: ApplicationFiled: April 12, 2024Publication date: October 24, 2024Inventors: Sebastian BÖHM, Andreas HAASE
-
Patent number: 12125588Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises activating a transceiver of a first communication device associated with an analyte sensor at a first time. The method also includes establishing a two-way communication channel with the second communication device. The activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.Type: GrantFiled: April 28, 2021Date of Patent: October 22, 2024Assignee: Dexcom Inc.Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
-
Patent number: 12114975Abstract: Various examples are directed to systems and methods for operating an analyte sensor system using sensor electronics. An example method may comprise applying a bias voltage change to an analyte sensor bias voltage and measuring a current value for each of a plurality of time periods after application of the bias voltage change. The example method may also comprise determining an estimated impedance using the current values for the plurality of time periods and determining a characteristic of the analyte sensor using the estimated impedance. The example method may further comprise receiving from the analyte sensor a signal indicative of an analyte concentration, and determining an estimated analyte concentration level using the determined characteristic of the analyte sensor and the received signal.Type: GrantFiled: December 27, 2019Date of Patent: October 15, 2024Assignee: Dexcom, Inc.Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth
-
Publication number: 20240340040Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.Type: ApplicationFiled: June 14, 2024Publication date: October 10, 2024Inventors: Thomas MILLER, Mark DERVAES, Phong LIEU, Peter C. SIMPSON, Shawn LARVENZ, Jacob S. LEACH, Sebastian BOHM
-
Patent number: 12089933Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. Methods of using and fabricating sensor devices are also provided.Type: GrantFiled: August 25, 2022Date of Patent: September 17, 2024Assignee: DEXCOM, INC.Inventors: Sebastian Bohm, Pradnya Prakash Samant, Jiong Zou
-
Publication number: 20240298940Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.Type: ApplicationFiled: May 15, 2024Publication date: September 12, 2024Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Böhm
-
Publication number: 20240293050Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.Type: ApplicationFiled: April 25, 2024Publication date: September 5, 2024Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
-
Patent number: 12081288Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.Type: GrantFiled: August 23, 2023Date of Patent: September 3, 2024Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
-
Patent number: 12081287Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.Type: GrantFiled: April 19, 2021Date of Patent: September 3, 2024Assignee: Dexcom, Inc.Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
-
Publication number: 20240277270Abstract: Various examples described herein are directed to systems and methods of detecting damage to an analyte sensor using analyte sensor impedance values. In some examples, a method of assessing sensor membrane integrity using sensor electronics comprises determining an impedance parameter of an analyte sensor and determining a membrane integrity state of the analyte sensor based on the impedance parameter.Type: ApplicationFiled: March 12, 2024Publication date: August 22, 2024Inventors: Sebastian Böhm, Anna Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha Sheth, Vincent Crabtree, Kamuran Turksoy
-
Patent number: 12053283Abstract: Systems and methods for applying time-dependent algorithmic compensation functions to data output from a continuous analyte sensor. Some embodiments determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.Type: GrantFiled: March 19, 2021Date of Patent: August 6, 2024Assignee: Dexcom, Inc.Inventors: Michael J. Estes, Stephen J. Vanslyke, Apurv Ullas Kamath, Thomas A. Peyser, Lucas Bohnett, Aarthi Mahalingam, Arturo Garcia, Peter C. Simpson, Anna Leigh Davis, Sebastian Böhm
-
Publication number: 20240252074Abstract: Various examples are directed to systems and methods of and using analyte sensors. An example analyte sensor system comprises an analyte sensor and a hardware device in communication with the analyte sensor. The hardware device may be configured to perform operations comprising applying a first bias voltage to the analyte sensor, the first bias voltage less than an operational bias voltage of the analyte sensor, measuring a first current at the analyte sensor when the first bias voltage is applied, and applying a second bias voltage to the analyte sensor. The operations may further comprise measuring a second current at the analyte sensor when the second bias voltage is applied, detecting a plateau bias voltage using the first current and the second current, determining that the plateau bias voltage is less than a plateau bias voltage threshold, and executing a responsive action at the analyte sensor.Type: ApplicationFiled: January 29, 2024Publication date: August 1, 2024Inventors: Sebastian Böhm, Anna Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha Sheth, Nicholas Kalfas, Vincent Crabtree, Kamuran Turksoy
-
Patent number: 12052067Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.Type: GrantFiled: August 23, 2023Date of Patent: July 30, 2024Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
-
Patent number: 12048540Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.Type: GrantFiled: January 29, 2019Date of Patent: July 30, 2024Assignee: Dexcom, Inc.Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Davis, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
-
Publication number: 20240245332Abstract: A transcutaneous sensor device configured for continuously measuring analyte concentrations in a host is provided. In some embodiments, the transcutaneous sensor device 100 comprises an in vivo portion 160 configured for insertion under the skin 180 of the host and an ex vivo portion 170 configured to remain above the surface of the skin 180 of the host after sensor insertion of the in vivo portion. The in vivo portion may comprise a tissue piercing element 110 configured for piercing the skin 180 of the host and a sensor body 120 comprising a material or support member 130 that provides sufficient column strength to allow the sensor body to be pushable in a host tissue without substantial buckling. The ex vivo portion 170 may be configured to comprise (or operably connect to) a sensor electronics unit and may comprise a mounting unit 150. Also described here are various configurations of the sensor body and the tissue piercing element that may be used to protect the membrane of the sensor body.Type: ApplicationFiled: February 23, 2024Publication date: July 25, 2024Inventors: Peter C. Simpson, Robert J. Boock, Sebastian Bohm, James H. Brauker, Paul V. Neale
-
Patent number: 12040849Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.Type: GrantFiled: August 23, 2023Date of Patent: July 16, 2024Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
-
Patent number: 12029560Abstract: Various examples are directed to systems and methods of and using analyte sensors. An example analyte sensor system comprises an analyte sensor and a hardware device in communication with the analyte sensor. The hardware device may be configured to perform operations comprising applying a first bias voltage to the analyte sensor, the first bias voltage less than an operational bias voltage of the analyte sensor, measuring a first current at the analyte sensor when the first bias voltage is applied, and applying a second bias voltage to the analyte sensor. The operations may further comprise measuring a second current at the analyte sensor when the second bias voltage is applied, detecting a plateau bias voltage using the first current and the second current, determining that the plateau bias voltage is less than a plateau bias voltage threshold, and executing a responsive action at the analyte sensor.Type: GrantFiled: December 27, 2019Date of Patent: July 9, 2024Assignee: Dexcom, Inc.Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Nicholas Kalfas, Vincent P. Crabtree, Kamuran Turksoy
-
Patent number: 12011265Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.Type: GrantFiled: March 20, 2019Date of Patent: June 18, 2024Assignee: DexCom, Inc.Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Böhm
-
Publication number: 20240183818Abstract: Systems and methods for compensating for effects of temperature on implantable sensors are provided. In some embodiments, systems and methods are provided for measuring a temperature to determine a change in temperature in a sensor environment. In certain embodiments, a temperature compensation factor is determined based on a change in temperature of the sensor environment. The temperature compensation factor can be used in processing raw data of an analyte signal to report a more accurate analyte concentration.Type: ApplicationFiled: December 11, 2023Publication date: June 6, 2024Inventors: Michael J. Estes, Jennifer Blackwell, Sebastian Böhm, Robert J. Boock, Jack Pryor, Peter C. Simpson, Matthew D. Wightlin
-
Patent number: 11992312Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.Type: GrantFiled: June 8, 2021Date of Patent: May 28, 2024Assignee: DexCom, Inc.Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint