Patents by Inventor Sebastian Bohm

Sebastian Bohm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200245385
    Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
    Type: Application
    Filed: April 13, 2020
    Publication date: July 30, 2020
    Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
  • Patent number: 10722161
    Abstract: Disclosed herein are devices, systems, and methods for a continuous analyte sensor, such as a continuous glucose sensor. In certain embodiments disclosed herein, various in vivo properties of the sensor's surroundings can be measured. In some embodiments, the measured properties can be used to identify a physiological response or condition in the body. This information can then be used by a patient, doctor, or system to respond appropriately to the identified condition.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 28, 2020
    Assignee: DexCom, Inc.
    Inventors: Naresh C. Bhavaraju, Sebastian Bohm, Robert J. Boock, Daiting Rong, Peter C. Simpson
  • Patent number: 10722162
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: July 28, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20200214565
    Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
    Type: Application
    Filed: March 18, 2020
    Publication date: July 9, 2020
    Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
  • Publication number: 20200205694
    Abstract: Various examples are directed to systems and methods for operating an analyte sensor system using sensor electronics. An example method may comprise applying a bias voltage change to an analyte sensor bias voltage and measuring a current value for each of a plurality of time periods after application of the bias voltage change. The example method may also comprise determining an estimated impedance using the current values for the plurality of time periods and determining a characteristic of the analyte sensor using the estimated impedance. The example method may further comprise receiving from the analyte sensor a signal indicative of an analyte concentration, and determining an estimated analyte concentration level using the determined characteristic of the analyte sensor and the received signal.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth
  • Publication number: 20200206737
    Abstract: Systems and methods for conducting designated reactions that include a fluidic network having a sample channel, a reaction chamber, and a reservoir. The sample channel is in flow communication with a sample port. The system also includes a rotary valve that has a flow channel and is configured to rotate between first and second valve positions. The flow channel fluidically couples the reaction chamber and the sample channel when the rotary valve is in the first valve position and fluidically couples the reservoir and the reaction chamber when the rotary valve is in the second valve position. A pump assembly induces a flow of a biological sample toward the reaction chamber when the rotary valve is in the first valve position and induces a flow of a reaction component from the reservoir toward the reaction chamber when the rotary valve is in the second valve position.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 2, 2020
    Inventors: Sebastian Bohm, Alex Aravanis, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Hai Quang Tran, Majid Aghababazadeh, M. Shane Bowen, Boyan Boyanov, Dale Buermann
  • Publication number: 20200205701
    Abstract: Various examples described herein are directed to systems and methods for determining an analyte concentration using an analyte sensor. A method may comprise disconnecting an analyte sensor from a measurement circuit and reconnecting the analyte sensor to the measurement circuit after an accumulation period. The method may comprise receiving a signal from the analyte sensor. The signal may be indicative of an amount of charge accumulated on the analyte sensor during the accumulation period. The method may also comprise determining an estimated analyte concentration level based on the received signal.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Nicholas Kalfas
  • Publication number: 20200205702
    Abstract: Various examples are directed to systems and methods of and using analyte sensors. An example analyte sensor system comprises an analyte sensor and a hardware device in communication with the analyte sensor. The hardware device may be configured to perform operations comprising applying a first bias voltage to the analyte sensor, the first bias voltage less than an operational bias voltage of the analyte sensor, measuring a first current at the analyte sensor when the first bias voltage is applied, and applying a second bias voltage to the analyte sensor. The operations may further comprise measuring a second current at the analyte sensor when the second bias voltage is applied, detecting a plateau bias voltage using the first current and the second current, determining that the plateau bias voltage is less than a plateau bias voltage threshold, and executing a responsive action at the analyte sensor.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Nicholas Kalfas, Vincent P. Crabtree, Kamuran Turksoy
  • Publication number: 20200209179
    Abstract: Various examples described herein are directed to systems and methods of detecting damage to an analyte sensor using analyte sensor impedance values. In some examples, a method of assessing sensor membrane integrity using sensor electronics comprises determining an impedance parameter of an analyte sensor and determining a membrane integrity state of the analyte sensor based on the impedance parameter.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Vincent P. Crabtree, Kamuran Turksoy
  • Patent number: 10687740
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 23, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Patent number: 10682084
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: June 16, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10667733
    Abstract: A transcutaneous sensor device configured for continuously measuring analyte concentrations in a host is provided. In some embodiments, the transcutaneous sensor device 100 comprises an in vivo portion 160 configured for insertion under the skin 180 of the host and an ex vivo portion 170 configured to remain above the surface of the skin 180 of the host after sensor insertion of the in vivo portion. The in vivo portion may comprise a tissue piercing element 110 configured for piercing the skin 180 of the host and a sensor body 120 comprising a material or support member 130 that provides sufficient column strength to allow the sensor body to be pushable in a host tissue without substantial buckling. The ex vivo portion 170 may be configured to comprise (or operably connect to) a sensor electronics unit and may comprise a mounting unit 150. Also described here are various configurations of the sensor body and the tissue piercing element that may be used to protect the membrane of the sensor body.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: June 2, 2020
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Sebastian Böhm, James H. Brauker, Paul V. Neale
  • Publication number: 20200152439
    Abstract: The invention relates to the operation of an energy-focusing and solid-angle-focusing reflector for time-of-flight mass spectrometers with pulsed ion acceleration into a flight tube, e.g. from an ion source with ionization by matrix-assisted laser desorption (MALDI). The objective of the invention is to generate high mass resolution in wide mass ranges up to high masses above eight kilodaltons by varying at least one operating voltage on one of the diaphragms of the reflector which can be varied according to a suitable time function during the spectrum acquisition. It may also be advantageous to adapt the operation of the accelerating voltages in the starting region of the ions accordingly. These measures make it possible to achieve a mass resolution much higher than R=100,000 in a wide mass range extending up to and above eight kilodaltons.
    Type: Application
    Filed: January 20, 2020
    Publication date: May 14, 2020
    Inventors: Sebastian BÖHM, Andreas HAASE
  • Patent number: 10624568
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: April 21, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10610141
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 7, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10615022
    Abstract: The invention relates to the operation of an energy-focusing and solid-angle-focusing reflector for time-of-flight mass spectrometers with pulsed ion acceleration into a flight tube, e.g. from an ion source with ionization by matrix-assisted laser desorption (MALDI). The objective of the invention is to generate high mass resolution in wide mass ranges up to high masses above eight kilodaltons by varying at least one operating voltage on one of the diaphragms of the reflector which can be varied according to a suitable time function during the spectrum acquisition. It may also be advantageous to adapt the operation of the accelerating voltages in the starting region of the ions accordingly. These measures make it possible to achieve a mass resolution much higher than R=100,000 in a wide mass range extending up to and above eight kilodaltons.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: April 7, 2020
    Inventors: Sebastian Böhm, Andreas Haase
  • Publication number: 20200093407
    Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
    Type: Application
    Filed: August 20, 2019
    Publication date: March 26, 2020
    Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
  • Patent number: 10596569
    Abstract: Systems and methods for conducting designated reactions that include a fluidic network having a sample channel, a reaction chamber, and a reservoir. The sample channel is in flow communication with a sample port. The system also includes a rotary valve that has a flow channel and is configured to rotate between first and second valve positions. The flow channel fluidically couples the reaction chamber and the sample channel when the rotary valve is in the first valve position and fluidically couples the reservoir and the reaction chamber when the rotary valve is in the second valve position. A pump assembly induces a flow of a biological sample toward the reaction chamber when the rotary valve is in the first valve position and induces a flow of a reaction component from the reservoir toward the reaction chamber when the rotary valve is in the second valve position.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: March 24, 2020
    Assignee: ILLUMINA, INC.
    Inventors: Sebastian Bohm, Alex Aravanis, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Hai Quang Tran, Majid Aghababazadeh, M. Shane Bowen, Boyan Boyanov, Dale Buermann
  • Patent number: 10598627
    Abstract: Systems and methods for compensating for effects of temperature on implantable sensors are provided. In some embodiments, systems and methods are provided for measuring a temperature to determine a change in temperature in a sensor environment. In certain embodiments, a temperature compensation factor is determined based on a change in temperature of the sensor environment. The temperature compensation factor can be used in processing raw data of an analyte signal to report a more accurate analyte concentration.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: March 24, 2020
    Assignee: DexCom, Inc.
    Inventors: Michael J. Estes, Jennifer Blackwell, Sebastian Bohm, Robert J. Boock, Jack Pryor, Peter C. Simpson, Matthew D. Wightlin
  • Publication number: 20200086319
    Abstract: A microfluidic device includes a microchannel having an interior bounded by a side wall, an inlet, a switching region, and a plurality of outlet channels downstream of the switching region. The microchannel is formed in a microfluidic chip substrate and configured to accommodate a flow of liquid through the microchannel. The microfluidic device includes a valve operatively coupled to the switching region comprising a sealed reservoir. A side passage extends between the reservoir and the interior of the microchannel via an aperture in the side wall and is configured to accommodate a volume of liquid between the interior of the microchannel and the reservoir. The microfluidic device includes an actuator integrated into the microfluidic chip and configured to increase an internal pressure of the reservoir and move at least a portion of the volume of the liquid from the side passage into the microchannel to deflect a portion of the liquid flowing through the microchannel.
    Type: Application
    Filed: September 26, 2019
    Publication date: March 19, 2020
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande