Patents by Inventor Seigi Suh

Seigi Suh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060284233
    Abstract: The present invention is directed to a dielectric thin film composition comprising: (1) one or more barium/titanium-containing additives selected from (a) barium titanate, (b) any composition that can form barium titanate during firing, and (c) mixtures thereof; dissolved in (2) organic medium; and wherein said thin film composition is doped with 0.002-0.05 atom percent of a dopant comprising an element selected from Sc, Cr, Fe, Co, Ni, Ca, Zn, Al, Ga, Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu and mixtures thereof and to capacitors comprising such compositions.
    Type: Application
    Filed: June 21, 2005
    Publication date: December 21, 2006
    Inventors: Seigi Suh, William Borland
  • Publication number: 20060287188
    Abstract: The present invention is directed to a dielectric thin film composition comprising: (1) one or more barium/titanium-containing selected from (a) barium titanate, (b) any composition that can form barium titanate during firing, and (c) mixtures thereof; dissolved in (2) organic medium; and wherein said thin film composition is doped with 0.002 to 0.05 atom percent of a manganese-containing additive.
    Type: Application
    Filed: June 21, 2005
    Publication date: December 21, 2006
    Inventors: William Borland, Ian Burn, Jon Ihlefeld, Jon-Paul Maria, Seigi Suh
  • Patent number: 7067346
    Abstract: The present invention involves the formation of titanium carbonate films that exhibit improved hydrolytic stability and photosensitivity. Such films can be used in semiconductor processing to deposit titanium and titanium oxide layers on a substrate and to form patterns without the use of photoresists. Preferred titanium carboxylates are non-branched and branched carboxylates wherein the alkoxide component is an alcohol, branched titanium carboxylates wherein the alkoxide component is a diol, non-branched and branched titanium alpha hydroxy carboxylate compounds, and titanium dicarboxylate compounds.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: June 27, 2006
    Assignee: Simon Foster University
    Inventors: Ross H. Hill, Paul J. Roman, Jr., Seigi Suh, Xin Zhang
  • Publication number: 20060125099
    Abstract: Tungsten nitride films were deposited on heated substrates by the reaction of vapors of tungsten bis(alkylimide)bis(dialkylamide) and a Lewis base or a hydrogen plasma. For example, vapors of tungsten bis(tert-butylimide)bis(dimethylamide) and ammonia gas supplied in alternate doses to surfaces heated to 300° C. produced coatings of tungsten nitride having very uniform thickness and excellent step coverage in holes with aspect ratios up to at least 40:1. The films are metallic and good electrical conductors. Suitable applications in microelectronics include barriers to the diffusion of copper and electrodes for capacitors. Similar processes deposit molybdenum nitride, which is suitable for layers alternating with silicon in X-ray mirrors.
    Type: Application
    Filed: July 9, 2003
    Publication date: June 15, 2006
    Inventors: Roy Gordon, Seigi Suh, Jill Becker
  • Publication number: 20050277780
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Application
    Filed: August 8, 2005
    Publication date: December 15, 2005
    Inventors: Roy Gordon, Jill Becker, Dennis Hausmann, Seigi Suh
  • Patent number: 6969539
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris-(ter-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. supplying the vapors in alternating pulse produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: November 29, 2005
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Jill Becker, Dennis Hausmann, Seigi Suh
  • Publication number: 20040043149
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris-(ter-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300 ° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250 ° C. supplying the vapors in alternating pulse produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Application
    Filed: September 2, 2003
    Publication date: March 4, 2004
    Inventors: Roy G. Gordon, Jill Becker, Dennis Hausmann, Seigi Suh
  • Publication number: 20030190820
    Abstract: The present invention involves the formation of titanium carbonate films that exhibit improved hydrolytic stability and photosensitivity. Such films can be used in semiconductor processing to deposit titanium and titanium oxide layers on a substrate and to form patterns without the use of photoresists. Preferred titanium carboxylates are non-branched and branched carboxylates wherein the alkoxide component is an alcohol, branched titanium carboxylates wherein the alkoxide component is a diol, non-branched and branched titanium alpha hydroxy carboxylate compounds, and titanium dicarboxylate compounds.
    Type: Application
    Filed: February 26, 2003
    Publication date: October 9, 2003
    Inventors: Ross H. Hill, Paul J. Roman, Seigi Suh, Xin Zhang