Patents by Inventor Serge Saxonov

Serge Saxonov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11624085
    Abstract: The present invention is directed to methods, compositions and systems for analyzing sequence information while retaining structural and molecular context of that sequence information.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: April 11, 2023
    Assignee: 10X GENOMICS, INC.
    Inventors: Xinying Zheng, Serge Saxonov, Michael Schnall-Levin, Kevin Ness, Rajiv Bharadwaj
  • Publication number: 20230087127
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 23, 2023
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol, Rajiv Bharadwaj, Xinying Zheng, Phillip Belgrader
  • Publication number: 20230073186
    Abstract: The present invention is directed to methods, compositions and systems for analyzing sequence information while retaining structural and molecular context of that sequence information.
    Type: Application
    Filed: September 12, 2022
    Publication date: March 9, 2023
    Applicant: 10X GENOMICS, INC.
    Inventors: Xinying ZHENG, Serge SAXONOV, Michael SCHNALL-LEVIN, Kevin NESS, Rajiv BHARADWAJ
  • Patent number: 11591637
    Abstract: This disclosure provides methods and compositions for sample processing, particularly for sequencing applications. Included within this disclosure are bead compositions, such as diverse libraries of beads attached to large numbers of oligonucleotides containing barcodes. Often, the beads provides herein are degradable. For example, they may contain disulfide bonds that are susceptible to reducing agents. The methods provided herein include methods of making libraries of barcoded beads as well as methods of combining the beads with a sample, such as by using a microfluidic device.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: February 28, 2023
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Donald Masquelier, Serge Saxonov, Landon Merrill, Andrew Price, Paul Hardenbol, Yuan Li
  • Publication number: 20230059254
    Abstract: Determining relative relationships of people who share a common ancestor within at least a threshold number of generations includes: receiving recombinable deoxyribonucleic acid (DNA) sequence information of a first user and recombinable DNA sequence information of a plurality of users; processing, using one or more computer processors, the recombinable DNA sequence information of the plurality of users in parallel; determining, based at least in part on a result of processing the recombinable DNA information of the plurality of users in parallel, a predicted degree of relationship between the first user and a user among the plurality of users, the predicted degree of relative relationship corresponding to a number of generations within which the first user and the second user share a common ancestor.
    Type: Application
    Filed: October 28, 2022
    Publication date: February 23, 2023
    Inventors: Lawrence Hon, Serge Saxonov, Brian Thomas Naughton, Joanna Louise Mountain, Anne Wojcicki, Linda Avey
  • Patent number: 11508461
    Abstract: Determining relative relationships of people who share a common ancestor within at least a threshold number of generations includes: receiving recombinable deoxyribonucleic acid (DNA) sequence information of a first user and recombinable DNA sequence information of a plurality of users; processing, using one or more computer processors, the recombinable DNA sequence information of the plurality of users in parallel; determining, based at least in part on a result of processing the recombinable DNA information of the plurality of users in parallel, a predicted degree of relationship between the first user and a user among the plurality of users, the predicted degree of relative relationship corresponding to a number of generations within which the first user and the second user share a common ancestor.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: November 22, 2022
    Assignee: 23andMe, Inc.
    Inventors: Lawrence Hon, Serge Saxonov, Brian Thomas Naughton, Joanna Louise Mountain, Anne Wojcicki, Linda Avey
  • Publication number: 20220362764
    Abstract: The present disclosure provides methods and compositions for detecting polynucleotides in a sample and for quantifying polynucleotide load in a sample. The polynucleotides can be associated with a disease, disorder, or condition. In some applications, methylated DNA is quantified, e.g., in order to determine the load of polynucleotides in a sample. The present disclosure also provides methods and compositions for determining the load of fetal polynucleotides in a biological sample, e.g., the load of fetal polynucleotides (e.g., DNA, RNA) in maternal plasma. The present disclosure provides methods and compositions for detecting cellular processes such as cellular viability, growth rates, and infection rates. This disclosure also provides compositions and methods for detecting differences in copy number of a target polynucleotide. In some embodiments, the methods and compositions provided herein are useful for diagnosis of fetal genetic abnormalities, when the starting sample is maternal tissue (e.g.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 17, 2022
    Applicant: Bio-Rad Laboratories, Inc.
    Inventors: Benjamin J. HINDSON, Serge SAXONOV, Phillip BELGRADER, Kevin D. NESS, Michael Y. LUCERO, Billy W. COLSTON, JR., Shawn Paul HODGES, Nicholas J. HEREDIA, Jeffrey Clark MELLEN, Camille Bodley TROUP, Paul WYATT
  • Patent number: 11499181
    Abstract: Method of haplotype analysis. In an exemplary method, an aqueous phase containing nucleic acid may be partitioned into a plurality of discrete volumes. At least one allele sequence may be amplified in the volumes from each of a first polymorphic locus and a second polymorphic locus that exhibit sequence variation in the nucleic acid. At least one measure of co-amplification of allele sequences from both loci in the same volumes may be determined. A haplotype of the first and second loci may be selected based on the at least one measure of co-amplification.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: November 15, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: John F. Regan, Serge Saxonov, Michael Y. Lucero, Benjamin J. Hindson, Phillip Belgrader, Simant Dube, Austin P. So, Jeffrey C. Mellen, Nicholas J. Heredia, Kevin D. Ness, Billy W. Colston, Jr.
  • Publication number: 20220355292
    Abstract: This invention provides compositions and methods for detecting differences in copy number of a target polynucleotide. In some cases, the methods and compositions provided herein are useful for diagnosis of fetal genetic abnormalities, when the starting sample is maternal tissue (e.g., blood, plasma). The methods and materials described apply techniques for allowing detection of small, but statistically significant, differences in polynucleotide copy number.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 10, 2022
    Applicant: Bio-Rad Laboratories, Inc.
    Inventors: Benjamin J. HINDSON, Serge SAXONOV, Phillip BELGRADER, Kevin D. NESS, Michael Y. LUCERO, Billy W. COLSTON, JR.
  • Publication number: 20220349003
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs).
    Type: Application
    Filed: June 8, 2022
    Publication date: November 3, 2022
    Inventors: Phillip Belgrader, Josephine Harada, Tarjei Sigurd Mikkelsen, Katherine Pfeiffer, Serge Saxonov, John R. Stuelpnagel
  • Publication number: 20220340968
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: July 8, 2022
    Publication date: October 27, 2022
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol, Rajiv Bharadwaj, Xinying Zheng, Phillip Belgrader
  • Patent number: 11473125
    Abstract: The present invention is directed to methods, compositions and systems for analyzing sequence information while retaining structural and molecular context of that sequence information.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: October 18, 2022
    Assignee: 10X GENOMICS, INC.
    Inventors: Xinying Zheng, Serge Saxonov, Michael Schnall-Levin, Kevin Ness, Rajiv Bharadwaj
  • Patent number: 11473138
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing. In some cases, this disclosure provides methods for the generation of polynucleotide barcode libraries, and for the attachment of such polynucleotides to target polynucleotides.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: October 18, 2022
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Mirna Jarosz, Paul Hardenbol, Michael Schnall-Levin, Kevin Ness, Serge Saxonov
  • Publication number: 20220307082
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs).
    Type: Application
    Filed: June 2, 2022
    Publication date: September 29, 2022
    Inventors: Phillip Belgrader, Josephine Harada, Tarjei Sigurd Mikkelsen, Katherine Pfeiffer, Serge Saxonov, John R. Stuelpnagel
  • Patent number: 11421274
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: August 23, 2022
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Serge Saxonov, Kevin Ness, Paul Hardenbol, Michael Schnall-Levin, Mirna Jarosz
  • Patent number: 11359239
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: June 14, 2022
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Kevin Ness, Serge Saxonov, Paul Hardenbol
  • Publication number: 20220177962
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs).
    Type: Application
    Filed: November 17, 2021
    Publication date: June 9, 2022
    Inventors: Phillip Belgrader, Josephine Harada, Tarjei Sigurd Mikkelsen, Katherine Pfeiffer, Serge Saxonov, John R. Stuelpnagel
  • Publication number: 20220154175
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: November 2, 2021
    Publication date: May 19, 2022
    Inventors: Benjamin Hindson, Serge Saxonov, Kevin Ness, Paul Hardenbol, Christopher Hindson, Donald Masquelier, Mirna Jarosz, Michael Schnall-Levin
  • Publication number: 20220157405
    Abstract: Displaying a comparison of genotypic information between relatives is disclosed, including receiving an indication that a first individual is a grandparent, receiving an indication that a second individual is a grandchild of the first individual, comparing the genotypic information of the first individual and the second individual and calculating a similarity score, and displaying an indication of the similarity score graphically using colors.
    Type: Application
    Filed: September 27, 2021
    Publication date: May 19, 2022
    Inventors: Linda Avey, Oleksiy Khomenko, Brian Thomas Naughton, Serge Saxonov, Anne Wojcicki, Alexander Wong
  • Publication number: 20220139501
    Abstract: Determining relative relationships of people who share a common ancestor within at least a threshold number of generations includes: receiving recombinable deoxyribonucleic acid (DNA) sequence information of a first user and recombinable DNA sequence information of a plurality of users; processing, using one or more computer processors, the recombinable DNA sequence information of the plurality of users in parallel; determining, based at least in part on a result of processing the recombinable DNA information of the plurality of users in parallel, a predicted degree of relationship between the first user and a user among the plurality of users, the predicted degree of relative relationship corresponding to a number of generations within which the first user and the second user share a common ancestor.
    Type: Application
    Filed: January 14, 2022
    Publication date: May 5, 2022
    Inventors: Lawrence Hon, Serge Saxonov, Brian Thomas Naughton, Joanna Louise Mountain, Anne Wojcicki, Linda Avey