Patents by Inventor Serge Saxonov

Serge Saxonov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11021749
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: June 1, 2021
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Kevin Ness, Serge Saxonov, Paul Hardenbol
  • Publication number: 20210130892
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 6, 2021
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo, Stephane Claude Boutet, Sarah Taylor, Niranjan Srinivas
  • Publication number: 20210129148
    Abstract: The disclosure provides devices, systems and methods for the generation of encapsulated reagents and the partitioning of encapsulated reagents for use in subsequent analyses and/or processing, such as in the field of biological analyses and characterization.
    Type: Application
    Filed: January 11, 2021
    Publication date: May 6, 2021
    Inventors: Rajiv BHARADWAJ, Kevin NESS, Debkishore MITRA, Donald A. MASQUELIER, Anthony MAKAREWICZ, Christopher HINDSON, Benjamin HINDSON, Serge SAXONOV
  • Publication number: 20210123103
    Abstract: The present disclosure relates to methods, compositions and systems for haplotype phasing and copy number variation assays. Included within this disclosure are methods and systems for combining the barcode comprising beads with samples in multiple separate partitions, as well as methods of processing, sequencing and analyzing barcoded samples.
    Type: Application
    Filed: June 11, 2020
    Publication date: April 29, 2021
    Inventors: Michael Schnall-Levin, Mirna Jarosz, Christopher Hindson, Kevin Ness, Serge Saxonov, Benjamin Hindson, Xinying Zheng, Patrick Marks, John Stuelpnagel
  • Patent number: 10954562
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: March 23, 2021
    Assignee: 10X GENOMICS, INC.
    Inventors: Phillip Belgrader, Josephine Harada, Tarjei Sigurd Mikkelsen, Katherine Pfeiffer, Serge Saxonov, John R. Stuelpnagel
  • Publication number: 20210079463
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: April 20, 2020
    Publication date: March 18, 2021
    Inventors: Benjamin Hindson, Serge Saxonov, Kevin Ness, Paul Hardenbol, Michael Schnall-Levin, Mirna Jarosz
  • Publication number: 20210079466
    Abstract: Provided herein are methods and systems for processing a nucleic acid molecule from a biological particle (e.g., cell). A plurality of partitions (e.g., droplets) may be generated such that partitions of the plurality of partitions each include a biological particle (e.g., cell) comprising the nucleic acid molecule and a particle (e.g., bead). The partitions can be processed (e.g., imaged) to obtain one or more physical and/or optical properties of their respective biological particles. The nucleic acid molecules included in the partitions can be barcoded and sequenced (e.g., using nucleic acid barcode molecules coupled to the particles of the partitions) to generate nucleic acid sequences of the nucleic acid molecules. The nucleic acid sequences can be electronically associated with the one or more optical properties of the biological particles.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 18, 2021
    Inventors: Rajiv BHARADWAJ, Serge SAXONOV
  • Publication number: 20210074385
    Abstract: Determining relative relationships of people who share a common ancestor within at least a threshold number of generations includes: receiving recombinable deoxyribonucleic acid (DNA) sequence information of a first user and recombinable DNA sequence information of a plurality of users; processing, using one or more computer processors, the recombinable DNA sequence information of the plurality of users in parallel; determining, based at least in part on a result of processing the recombinable DNA information of the plurality of users in parallel, a predicted degree of relationship between the first user and a user among the plurality of users, the predicted degree of relative relationship corresponding to a number of generations within which the first user and the second user share a common ancestor.
    Type: Application
    Filed: October 16, 2020
    Publication date: March 11, 2021
    Inventors: Lawrence Hon, Serge Saxonov, Brian Thomas Naughton, Joanna Louise Mountain, Anne Wojcicki, Linda Avey
  • Publication number: 20210043280
    Abstract: Determining relative relationships of people who share a common ancestor within at least a threshold number of generations includes: receiving recombinable deoxyribonucleic acid (DNA) sequence information of a first user and recombinable DNA sequence information of a plurality of users; processing, using one or more computer processors, the recombinable DNA sequence information of the plurality of users in parallel; determining, based at least in part on a result of processing the recombinable DNA information of the plurality of users in parallel, a predicted degree of relationship between the first user and a user among the plurality of users, the predicted degree of relative relationship corresponding to a number of generations within which the first user and the second user share a common ancestor.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 11, 2021
    Inventors: Lawrence Hon, Serge Saxonov, Brian Thomas Naughton, Joanna Louise Mountain, Anne Wojcicki, Linda Avey
  • Publication number: 20210043279
    Abstract: Determining relative relationships of people who share a common ancestor within at least a threshold number of generations includes: receiving recombinable deoxyribonucleic acid (DNA) sequence information of a first user and recombinable DNA sequence information of a plurality of users; processing, using one or more computer processors, the recombinable DNA sequence information of the plurality of users in parallel; determining, based at least in part on a result of processing the recombinable DNA information of the plurality of users in parallel, a predicted degree of relationship between the first user and a user among the plurality of users, the predicted degree of relative relationship corresponding to a number of generations within which the first user and the second user share a common ancestor.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 11, 2021
    Inventors: Lawrence Hon, Serge Saxonov, Brian Thomas Naughton, Joanna Louise Mountain, Anne Wojcicki, Linda Avey
  • Publication number: 20210043278
    Abstract: Determining relative relationships of people who share a common ancestor within at least a threshold number of generations includes: receiving recombinable deoxyribonucleic acid (DNA) sequence information of a first user and recombinable DNA sequence information of a plurality of users; processing, using one or more computer processors, the recombinable DNA sequence information of the plurality of users in parallel; determining, based at least in part on a result of processing the recombinable DNA information of the plurality of users in parallel, a predicted degree of relationship between the first user and a user among the plurality of users, the predicted degree of relative relationship corresponding to a number of generations within which the first user and the second user share a common ancestor.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 11, 2021
    Inventors: Lawrence Hon, Serge Saxonov, Brian Thomas Naughton, Joanna Louise Mountain, Anne Wojcicki, Linda Avey
  • Publication number: 20210002632
    Abstract: Provided herein are methods, compositions, and kits for assays, many of which involve amplification reactions such as digital PCR or droplet digital PCR. The assays may be used for such applications as sequencing, copy number variation analysis, and others. In some cases, the assays involve subdividing a sample into multiple partitions (e.g., droplets) and merging the partitions with other partitions that comprise adaptors with barcodes.
    Type: Application
    Filed: July 22, 2020
    Publication date: January 7, 2021
    Inventor: Serge SAXONOV
  • Publication number: 20200399631
    Abstract: The present disclosure relates to methods and systems for sample processing and analyzing when the total quantity of input sample is low or when a target of interest is present as a relatively minor or rare population within the overall sample. The disclosure particularly relates to analyzing nucleic acid samples, including samples where a target nucleic acid of interest is present as a relatively low proportion of the overall nucleic acids.
    Type: Application
    Filed: December 23, 2019
    Publication date: December 24, 2020
    Inventors: Mirna Jarosz, Christopher Hindson, Michael Schnall-Levin, Kevin Dean Ness, Serge Saxonov, Benjamin Hindson, John Stuelpnagel
  • Publication number: 20200385805
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 10, 2020
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol, Rajiv Bharadwaj, Xinying Zheng, Phillip Belgrader
  • Publication number: 20200377942
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol, Rajiv Bharadwaj, Xinying Zheng, Phillip Belgrader
  • Patent number: 10854315
    Abstract: Systems and methods for determining structural variation and phasing using variant call data obtained from nucleic acid of a biological sample are provided. Sequence reads are obtained, each comprising a portion corresponding to a subset of the test nucleic acid and a portion encoding a barcode independent of the sequencing data. Bin information is obtained. Each bin represents a different portion of the sample nucleic acid. Each bin corresponds to a set of sequence reads in a plurality of sets of sequence reads formed from the sequence reads such that each sequence read in a respective set of sequence reads corresponds to a subset of the nucleic acid represented by the bin corresponding to the respective set. Binomial tests identify bin pairs having more sequence reads with the same barcode in common than expected by chance. Probabilistic models determine structural variation likelihood from the sequence reads of these bin pairs.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: December 1, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks, Michael Schnall-Levin, Xinying Zheng, Mirna Jarosz, Serge Saxonov, Kristina Giorda, Patrice Mudivarti, Heather Ordonez, Jessica Terry, William Haynes Heaton
  • Patent number: 10829815
    Abstract: Provided herein are methods and systems for processing a nucleic acid molecule from a biological particle (e.g., cell). A plurality of partitions (e.g., droplets) may be generated such that partitions of the plurality of partitions each include a biological particle (e.g., cell) comprising the nucleic acid molecule and a particle (e.g., bead). The partitions can be processed (e.g., imaged) to obtain one or more physical and/or optical properties of their respective biological particles. The nucleic acid molecules included in the partitions can be barcoded and sequenced (e.g., using nucleic acid barcode molecules coupled to the particles of the partitions) to generate nucleic acid sequences of the nucleic acid molecules. The nucleic acid sequences can be electronically associated with the one or more optical properties of the biological particles.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: November 10, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Rajiv Bharadwaj, Serge Saxonov
  • Patent number: 10793905
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: October 6, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Zachary Bent, Josephine Harada, Christopher Hindson, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Solongo Batjargal Ziraldo
  • Publication number: 20200291472
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: January 23, 2020
    Publication date: September 17, 2020
    Inventors: Benjamin Hindson, Serge Saxonov, Kevin Ness, Paul Hardenbol
  • Patent number: 10774370
    Abstract: The present invention is directed to methods, compositions and systems for analyzing sequence information while retaining structural and molecular context of that sequence information.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 15, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Xinying Zheng, Serge Saxonov, Michael Schnall-Levin, Kevin Ness, Rajiv Bharadwaj