Patents by Inventor Sergei F. Burlatsky

Sergei F. Burlatsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10252508
    Abstract: A method of evaluating and validating additive manufacturing operations includes generating a multidimensional space defined by a plurality of bounds, determining a coordinate position of at least one additive manufacturing operation within the multi-dimensional coordinate system, and categorizing the operation as flaw free when the coordinate position is within the multi-dimensional space. Each of the bounds is defined on a distinct parameter of an additive manufacturing process, each of said parameters being a dimension in a multi-dimensional coordinate system.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 9, 2019
    Assignee: United Technologies Corporation
    Inventors: Sergei F. Burlatsky, Dmitri Novikov, William J. Brindley, David Ulrich Furrer
  • Patent number: 10252510
    Abstract: A method of evaluating and validating additive manufacturing operations includes generating a multidimensional space defined by a plurality of bounds, each of the bounds being defined on a distinct parameter of an additive manufacturing process and each of the bounds being directly related to the occurrence of a downskin roughness flaw, each of the parameters being a dimension in a multi-dimensional coordinate system, determining a coordinate position of at least one additive manufacturing operation within the multi-dimensional coordinate system, and categorizing the operation as free of downskin roughness flaws when the coordinate position is within the multi-dimensional space.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 9, 2019
    Assignee: United Technologies Corporation
    Inventors: Sergei F. Burlatsky, Dmitri Novikov, William J. Brindley, David Ulrich Furrer
  • Patent number: 10252509
    Abstract: A method of evaluating and validating additive manufacturing operations includes generating a multidimensional space defined by a plurality of bounds, each of the bounds being defined on a distinct parameter of an additive manufacturing process and each of the parameters affecting the occurrence of a keyhole porosity flaw, each of the parameters being a dimension in a multi-dimensional coordinate system, determining a coordinate position of at least one additive manufacturing operation within the multi-dimensional coordinate system, and categorizing the operation as free of keyhole porosity flaws when the coordinate position is within the multi-dimensional space.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 9, 2019
    Assignee: United Technologies Corporation
    Inventors: Sergei F. Burlatsky, Dmitri Novikov, William J. Brindley, David Ulrich Furrer
  • Patent number: 10254730
    Abstract: A method of evaluating and validating additive manufacturing operations includes generating a multidimensional space defined by a plurality of bounds, each of the bounds being defined on a distinct parameter of an additive manufacturing process and each of the parameters being directly related to the occurrence of a horizontal lack of fusion flaw, each of the parameters being a dimension in a multi-dimensional coordinate system, determining a coordinate position of at least one additive manufacturing operation within the multi-dimensional coordinate system, and categorizing the operation as free of horizontal lack of fusion flaws when the coordinate position is within the multi-dimensional space.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 9, 2019
    Assignee: United Technologies Corporation
    Inventors: Sergei F. Burlatsky, Dmitri Novikov, William J. Brindley, David Ulrich Furrer
  • Patent number: 10252512
    Abstract: A method of evaluating and validating additive manufacturing operations includes generating a multidimensional space defined by a plurality of bounds, each of the bounds being defined on a distinct parameter of an additive manufacturing process and each of the bounds being directly related to the occurrence of a vertical lack of fusion flaw, each of the parameters being a dimension in a multi-dimensional coordinate system, determining a coordinate position of at least one additive manufacturing operation within the multi-dimensional coordinate system, and categorizing the operation as free of vertical lack of fusion flaws when the coordinate position is within the multi-dimensional space.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 9, 2019
    Assignee: United Technologies Corporation
    Inventors: Sergei F. Burlatsky, Dmitri Novikov, William J. Brindley, David Ulrich Furrer
  • Patent number: 10252511
    Abstract: A method of evaluating and validating additive manufacturing operations includes generating a multidimensional space defined by a plurality of bounds, each of the bounds being defined on a distinct parameter of an additive manufacturing process and each of the bounds being directly related to the occurrence of a balling flaw, each of the parameters being a dimension in a multi-dimensional coordinate system, determining a coordinate position of at least one additive manufacturing operation within the multi-dimensional coordinate system, and categorizing the operation as free of balling flaws when the coordinate position is within the multi-dimensional space.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 9, 2019
    Assignee: United Technologies Corporation
    Inventors: Sergei F. Burlatsky, Dmitri Novikov, William J. Brindley, David Ulrich Furrer
  • Patent number: 10233533
    Abstract: A method for use in a coating process includes pre-heating a substrate in the presence of a coating material and shielding the substrate during the pre-heating from premature deposition of the coating material by establishing a gas screen between the substrate and the coating material. An apparatus for use in a coating process includes a chamber, a crucible that is configured to hold a coating material in the chamber, an energy source operable to heat the interior of the chamber, a coating envelope situated with respect to the crucible, and at least one gas manifold located near the coating envelope. The at least one gas manifold is configured to provide a gas screen between the coating envelope and the crucible. A second manifold provides gas during a later coating deposition to compress a vapor plume of the coating material and focus the plume on the substrate to increase deposition rate.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: March 19, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Joseph A. DePalma, Mladen F. Trubelja, David A. Litton, Dmitri L. Novikov, Sergei F. Burlatsky
  • Patent number: 10167733
    Abstract: A vibration resistant fan guide vane for a gas turbine engine is provided. The fan guide vane comprises a vibration damping component made of a MAXMET composite. The damping component may be a cover that covers some or all of the fan guide vane body. Alternatively, portions of the fan guide vane body or the entire vane body may be made from MAXMET composites. The disclosure makes use of the ultrahigh, fully reversible, non-linear elastic hysteresis behavior that MAXMET composites exhibit during cyclic elastic deformation in order to damp vibration.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: January 1, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Shahram Amini, Christopher W. Strock, Sergei F. Burlatsky, Dmitri Novikov
  • Publication number: 20180348736
    Abstract: A method includes accessing a first model defining a shape of a part. The shape of the part is segregated into a plurality of predefined shapes selected from a library of predefined shapes. The predefined models for each of plurality of predefined shapes are assembled into a second model defining the shape of the part. The part is additively manufactured according to the second model.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 6, 2018
    Inventors: John A. Sharon, Vijay Narayan Jagdale, Sergei F. Burlatsky, David Ulrich Furrer, Tahany Ibrahim El-Wardany, Ranadip Acharya, Alexander Staroselsky
  • Publication number: 20180292146
    Abstract: A heat exchanger includes a base structure, and a plurality of layers stacked on the base structure. Each layer includes multiple additively manufactured ribs extending from one of the base structure. A foil layer is disposed across the additively manufactured ribs such that a plurality of channels are defined within each layer.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 11, 2018
    Inventors: David Ulrich Furrer, Sergei F. Burlatsky
  • Patent number: 10053190
    Abstract: An article with controllable wettability includes a substrate and a layer of a composite material supported on the substrate. The layer has an exposed surface and the composite material includes particles that have controllable polarization embedded fully or partially in a matrix. A controller is operable to selectively apply a controlled variable activation energy to the layer. The controllable polarization of the particles varies responsive to the controlled variable activation energy such that a wettability of the exposed surface also varies responsive to the controlled variable activation energy.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: August 21, 2018
    Assignees: United Technologies Corporation, The University of Connecticut
    Inventors: David Ulrich Furrer, Sergei F. Burlatsky, Paul Elliott, Stephen P. Stagon, Hanchen Huang
  • Publication number: 20180231014
    Abstract: A multilayer abradable coating includes at least one first abradable layer; and at least one second abradable layer, wherein the first abradable layer and the second abradable layer have different properties related to erosion resistance.
    Type: Application
    Filed: February 13, 2017
    Publication date: August 16, 2018
    Applicant: United Technologies Corporation
    Inventors: Pantcho P. Stoyanov, Agnieszka M. Wusatowska-Sarnek, Thomas D. Kasprow, David Ulrich Furrer, Sergei F. Burlatsky
  • Publication number: 20180229302
    Abstract: A powder processing machine includes a work bed, a powder deposition device operable to deposit layers of powder in the work bed, an energy beam device operable to emit an energy beam with a variable beam power and scan the energy beam in a path across the powder in the work bed with a variable beam scan rate to melt and fuse regions of the powder, a sensor operable to detect process characteristics in the work bed by location in the work bed during scanning of the energy beam and produce signals representative of the process characteristics and locations, and a controller in communication with the sensor to receive the signals. The controller is configured to identify anomalies in the process characteristics and responsively adjust at least one of the beam power or the beam scan rate at the locations of the anomalies.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 16, 2018
    Inventors: David Ulrich Furrer, Sergei F. Burlatsky
  • Publication number: 20180229303
    Abstract: A powder processing machine includes a work bed, a powder deposition device operable to deposit powder in the work bed, at least one energy beam device operable to emit an energy beam with a variable beam power and direct the energy beam onto the work bed with a variable beam scan rate to melt and fuse regions of the powder, and a controller operable to dynamically control at least one of the beam power or the beam scan rate to change how the powder melts and fuses. The controller is configured to determine whether an instant set of process parameters falls within a defect condition or a non-defect condition and adjust at least one of the beam power or the beam scan rate responsive to the defect condition such that the instant set of process parameters falls within the non-defect condition.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 16, 2018
    Inventors: Sergei F. Burlatsky, David Ulrich Furrer, Rebecca L. Runkle, Jesse R. Boyer, Christopher F. O'Neill
  • Patent number: 9997794
    Abstract: A membrane electrode assembly is provided which includes an anode; a cathode; a membrane between the anode and the cathode; and a protective layer between the membrane and at least one electrode of the anode and the cathode, the protective layer having a layer of ionomer material containing a catalyst, the layer having a porosity of between 0 and 10%, an ionomer content of between 50 and 80% vol., a catalyst content of between 10 and 50% vol., and an electrical connectivity between catalyst particles of between 35 and 75%. A configuration using a precipitation layer to prevent migration of catalyst ions is also provided.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: June 12, 2018
    Assignee: Audi AG
    Inventors: Sergei F. Burlatsky, Ned E. Cipollini, David A. Condit, Thomas H. Madden, Sathya Motupally, Lesia V. Protsailo, Timothy W. Patterson, Lei Chen, Mallika Gummalla
  • Publication number: 20180148542
    Abstract: A polymeric material process includes increasing a mobility within a polymer to enables specific alignment of polymer chains.
    Type: Application
    Filed: January 15, 2018
    Publication date: May 31, 2018
    Applicant: United Technologies Corporation
    Inventors: Dmitri Novikov, David Ulrich Furrer, Sergei F. Burlatsky, Hillary Anne Huttenhower, Vadim V. Atrazhev, Vadim I. Sultanov, Dmitry Dmitriev, John D. Riehl, Charles R. Watson
  • Publication number: 20180147541
    Abstract: Disclosed is an ion-exchange membrane that includes a molecular barrier for influencing permeation selectivity through the membrane. The membrane includes fluorinated carbon backbone chains and fluorinated side chains that extend off of the fluorinated carbon backbone chains. The fluorinated side chains include acid groups for ionic conductivity. The acid groups surround and define permeable domains that are free of the fluorinated carbon backbone chains. Molecular barriers are located in the permeable domains and influence permeability through the domains.
    Type: Application
    Filed: April 24, 2015
    Publication date: May 31, 2018
    Inventors: Sergei F. BURLATSKY, Vadim ATRAZHEV, Wei XIE, Robert Mason DARLING, Michael L. PERRY
  • Publication number: 20180128284
    Abstract: A rotor for a turbomachine is provided which includes a hub; and a plurality of blades extending radially from the hub, the plurality of blades comprising a first subset of blades having first tips and an abrasive coating on the first tips, and a second subset of blades having second tips with no abrasive coating on the second tips, wherein a radius (R2) of the first subset of blades, including thickness of the abrasive coating, is greater than a radius (R1) of the second subset of blades, and wherein a base radius (R) of the first subset of blades, not including thickness of the abrasive coating, is less than the radius (R1) of the second subset of blades.
    Type: Application
    Filed: November 7, 2016
    Publication date: May 10, 2018
    Applicant: United Technologies Corporation
    Inventors: Agnieszka M. Wusatowska-Sarnek, Sergei F. Burlatsky, David Ulrich Furrer, J. Michael McQuade
  • Patent number: 9957826
    Abstract: A stiffness controlled abradeable seal system for a gas turbine engine includes a cantilevered arm that supports one of a rotating seal surface and a static seal surface, a stiffness of the cantilevered arm controlled to achieve a desired operational temperature at a seal interface.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: May 1, 2018
    Assignee: United Technologies Corporation
    Inventors: Dmitri Novikov, David Ulrich Furrer, Sergei F Burlatsky
  • Patent number: 9885110
    Abstract: A method or control strategy in a coating apparatus for use in a coating process can include controlling differential gas pressures among multiple selected localized zones in a coating chamber with respect to each other. The controlled differential gas pressure of the multiple selected localized zones is used to influence how a coating deposits on at least one component. The localized zones can be selected from a first localized zone around the component, a second localized zone adjacent the source of coating material, a third localized zone that diverges from the second localized zone toward the first localized zone, and a fourth localized zone that circumscribes at least the third localized zone.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: February 6, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Dmitri Novikov, Sergei F. Burlatsky, David Ulrich Furrer, David A. Litton