Patents by Inventor Shamouil Shamouilian

Shamouil Shamouilian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5801915
    Abstract: An electrostatic chuck (20) for holding a substrate (45) in a process chamber (80) having a voltage supply terminal (65) for charging the chuck (20). The chuck includes an electrostatic member (25) comprising at least one electrode (30), an electrically insulated holding surface (40) for holding a substrate (45) thereon, and an electrical contact surface (48) for providing charge to the electrode. A unidirectionally conducting coupler layer (70) electrically couples the contact surface (48) of the electrostatic member to the voltage supply terminal to conduct charge substantially only in a single direction from the terminal to the contact surface. Preferably, an electrical connector (50) having a junction surface (55) bonded to the contact surface (55) of the electrode, and a terminal surface (60) for electrically contacting the voltage supply terminal (65), is used to electrically couple the unidirectionally conducting coupler layer (70) to the voltage supply terminal (65).
    Type: Grant
    Filed: March 28, 1997
    Date of Patent: September 1, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Arnold Kholodenko, Alexander M. Veytser, Shamouil Shamouilian
  • Patent number: 5753132
    Abstract: A process for fabricating an electrostatic chuck (20) comprising the steps of (c) forming a base (80) having an upper surface with cooling grooves (85) therein, the grooves sized and distributed for holding a coolant therein for cooling the base; and (d) pressure conforming an electrical insulator layer (45) to the grooves on the base by the steps of (i) placing the base into a pressure forming apparatus (25) and applying an electrical insulator layer over the grooves in the base; and (ii) applying a sufficiently high pressure onto the insulator layer to pressure conform the insulator layer to the grooves to form a substantially continuous layer of electrical insulator conformal to the grooves on the base.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: May 19, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Shamouil Shamouilian, Sasson Somekh, Hyman J. Levinstein, Manoocher Birang, Semyon Sherstinsky, John F. Cameron
  • Patent number: 5751537
    Abstract: A failure resistant electrostatic chuck 20 for holding a substrate 35 during processing of the substrate 35, is described. The chuck 20 comprises a plurality of electrodes 25 covered by an insulator 30, the electrodes 25 capable of electrostatically holding a substrate 35 when a voltage is applied thereto. An electrical power bus 40 has a plurality of output terminals 45 that conduct voltage to the electrodes 25. Fuses 50 electrically connect the electrodes 25 to the output terminals 45 of the power bus 40, each fuse 50 connecting at least one electrode 25 in series to an output terminal from the power bus 40. The fuses 50 are capable of electrically disconnecting the electrode 25 from the output terminals 45 when the insulator 30 punctures and exposes the electrode 25 to the process environment causing a current to flow through the fuse 50.
    Type: Grant
    Filed: May 2, 1996
    Date of Patent: May 12, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Ananda H. Kumar, Shamouil Shamouilian
  • Patent number: 5745331
    Abstract: An electrostatic chuck (20) for holding a substrate (75) comprises (i) a base (80) having an upper surface (95) with grooves (85) therein, the grooves (85) sized and distributed for holding coolant for cooling a substrate (75), and (ii) a substantially continuous insulator film (45) conformal to the grooves (85) on upper surface (95) of the base (80). The base (80) can be electrically conductive and capable of serving as the electrode (50) of the chuck (20), or the electrode (50) can be embedded in the insulator film (45). The insulator film (45) has a dielectric breakdown strength sufficiently high that when a substrate (75) placed on the chuck (20) and electrically biased with respect to the electrode (50), electrostatic charge accumulates in the substrate (75) and in the electrode (50) forming an electrostatic force that attracts and holds the substrate (75) to the chuck (20).
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: April 28, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Shamouil Shamouilian, Sasson Somekh, Hyman J. Levinstein, Manoocher Birang, Semyon Sherstinsky, John F. Cameron
  • Patent number: 5729423
    Abstract: A puncture resistant electrostatic chuck (20) is described. The chuck (20) comprises at least one electrode (25); and a composite insulator (30) covering the electrode. The composite insulator comprises a matrix material having a conformal holding surface (50) capable of conforming to the substrate (35) under application of an electrostatic force generated by the electrode to reduce leakage of heat transfer fluid held between the substrate and the holding surface. A hard puncture resistant layer, such a layer of fibers or an aromatic polyamide layer, is positioned below the holding surface (50) and is sufficiently hard to increase the puncture resistance of the composite insulator.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: March 17, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Arik Donde, Hyman J. Levinstein, Robert W. Wu, Andreas Hegedus, Edwin C. Weldon, Shamouil Shamouilian, Jon T. Clinton, Surinder S. Bedi
  • Patent number: 5671117
    Abstract: An electrostatic chuck for securing a semiconductor wafer on a pedestal having multiple apertures for the introduction of cooling gas beneath the wafer. The multiple apertures reduce overheating near the wafer edge and provide lower temperature gradients across the wafer. The wafer is held by electrostatic force against a laminate of an electrode layer sandwiched between two dielectric layers in such a way that the laminate presents a planar surface to the wafer for a substantial distance beyond the outer edge of the electrode layer. The laminate construction ensures that a large wafer area beyond the outer edge of the electrode is in contact with the laminate, to minimize cooling gas leakage near the edge, and provides a longer useful life by increasing the path length of dielectric material between the electrode layer and potentially damaging plasma material surrounding the chuck.
    Type: Grant
    Filed: March 27, 1996
    Date of Patent: September 23, 1997
    Assignee: Applied Materials Inc.
    Inventors: Semyon Sherstinsky, Shamouil Shamouilian, Manoocher Birang, Alfred Mak, Simon W. Tam
  • Patent number: 5646814
    Abstract: A multi-electrode electrostatic chuck (20) for holding a substrate (42) such as a silicon wafer during processing is described. The electrostatic chuck (20) comprises (i) a first electrode (22), (ii) a second electrode (24), and (iii) an insulator (26) having a lower portion (26a), a middle portion (26b) and an upper portion (26c). The lower portion (26a) of the insulator (26) is below the first electrode (22) and has a bottom surface (28) suitable for resting the chuck (20) on a support (44) in a process chamber (41). The middle portion (26b) of the insulator (26) lies between the first and second electrodes (22), (24). The upper portion (26c) of the insulator (26) is on the second electrode (24), and has a top surface (30) suitable for holding a substrate (42). The first and second electrodes (22, 24) can have a unipolar or bipolar configurations. In operation, the chuck (20) is placed on a support (44) in a process chamber (41) so that the bottom surface (28) of the chuck (20) rests on the support (44).
    Type: Grant
    Filed: July 15, 1994
    Date of Patent: July 8, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Shamouil Shamouilian, Samuel Broydo, Manoocher Birang
  • Patent number: 5634266
    Abstract: A method of making a dielectric chuck for securing a semiconductor wafer on a pedestal having multiple apertures for the introduction of cooling gas beneath the wafer. The wafer is held by electrostatic force against a laminate of an electrode layer sandwiched between two dielectric layers in accordance with the method, such that the laminate presents a planar surface to the wafer for a substantial distance beyond the outer edge of the electrode layer. The laminate construction method ensures that a large wafer area beyond the outer edge of the electrode is in contact with the laminate, to minimize cooling gas leakage near the edge, and provides a longer useful life by increasing the path length of dielectric material between the electrode layer and potentially damaging plasma material surrounding the chuck.
    Type: Grant
    Filed: May 24, 1995
    Date of Patent: June 3, 1997
    Assignee: Applied Materials Inc.
    Inventors: Semyon Sherstinsky, Shamouil Shamouilian, Manoocher Birang, Alfred Mak, Simon W. Tam
  • Patent number: 5606485
    Abstract: An electrostatic chuck having reduced erosion in erosive process environments is described. The electrostatic chuck comprises an insulator with (i) an electrode therein, (ii) a central portion overlying the electrode, and adapted to support a substrate thereon, and (iii) a peripheral portion extending beyond the electrode. In one version of the invention, the central portion of the insulator is raised relative to the lower peripheral portion of the insulator, thereby defining a step having a height H, which is maintained at less than about 10 microns, to reduce erosion of the insulator. In another version of the chuck, the peripheral portion of the insulator extends beyond the electrode and has a width W, which is maintained at at least about 2 mm to reduce erosion of the insulator.
    Type: Grant
    Filed: July 18, 1994
    Date of Patent: February 25, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Shamouil Shamouilian, John F. Cameron
  • Patent number: 5592358
    Abstract: An electrostatic chuck 20 for holding substrates 42 in a process chamber 40 containing a magnetic flux 43 comprises a base 22 having an upper surface adapted to support a substrate 42 thereon. An insulator 26 with an electrode 24 therein, is on the base 22. A magnetic shunt 34 comprising a ferromagnetic material is positioned (i) either on the base 22, or (ii) in the insulator 26, or (iii) directly below, and contiguous to, the base 22.
    Type: Grant
    Filed: July 18, 1994
    Date of Patent: January 7, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Shamouil Shamouilian, John F. Cameron, Chandra Deshpandey, Yuh-Jia Su
  • Patent number: 5533923
    Abstract: In accordance with the present invention, a polishing pad useful for polishing a semiconductor-comprising substrate is disclosed. The polishing pad is constructed to include conduits which pass through at least a portion of and preferably through the entire thickness of the polishing pad. The conduits, preferably tubulars, are constructed from a first material which is different from a second material used as a support matrix. The conduits are positioned within the support matrix such that the longitudinal centerline of the conduit forms an angle ranging from about 60.degree. to about 120.degree. with the working surface of the polishing pad.
    Type: Grant
    Filed: April 10, 1995
    Date of Patent: July 9, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Shamouil Shamouilian, Daniel O. Clark
  • Patent number: 5486975
    Abstract: A corrosion resistant electrostatic chuck 10 for holding a silicon wafer 18 during processing with a corrosive gas has an electrically insulative layer 12 thereon protected from corrosion by a guard 14. The insulative layer 12 has a top surface 20 covered by the silicon wafer 18 and an exposed side surface 16. The guard 14 substantially encloses the exposed side surface 16 of the insulative layer 12 and protects the insulative layer 12 from a corrosive gas. The guard 14 is made of sacrificial material that corrodes at least as fast as the insulative layer 12 corrodes when exposed to the corrosive gas. The sacrificial material positioned near the exposed side surface 16 corrodes and reduces the concentration of the corrosive gas at the exposed side surface 16, thereby reducing the rate of corrosion of the insulative layer 12.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: January 23, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Shamouil Shamouilian, Yoshi Tanase
  • Patent number: 4940508
    Abstract: The present invention is directed to a system for removing material from a structure. The system includes an excimer laser for removing material by ablative photodecomposition and means for increasing the energy density of the laser beam. The system further includes an aperture structure having a plurality of openings of different sizes and shapes. At least one of these openings may be selectively positioned in the laser beam. Additionally, the system includes a stage for supporting the structure wherein the stage is moveable in at least the x and y directions.
    Type: Grant
    Filed: June 26, 1989
    Date of Patent: July 10, 1990
    Assignee: Digital Equipment Corporation
    Inventors: Shamouil Shamouilian, Paul N. Ludwig