Patents by Inventor Shandon Dee Hart

Shandon Dee Hart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11231526
    Abstract: Embodiments of this disclosure pertain to articles that exhibit scratch-resistance and improved optical properties. In some examples, the article exhibits a color shift of about 2 or less, when viewed at an incident illumination angle in the range from about 0 degrees to about 60 degrees from normal under an illuminant. In one or more embodiments, the articles include a substrate, and an optical film disposed on the substrate. The optical film includes a scratch-resistant layer and an optical interference layer. The optical interference layer may include one or more sub-layers that exhibit different refractive indices. In one example, the optical interference layer includes a first low refractive index sub-layer and a second a second high refractive index sub-layer. In some instances, the optical interference layer may include a third sub-layer.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: January 25, 2022
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson, James Joseph Price
  • Publication number: 20220016854
    Abstract: A composite has repeating domains of an inorganic glass and a polymer, such that the inorganic glass and the polymer each have a glass transition temperature (Tg) or softening temperature of less than 450° C., and at least 50% of the inorganic glass domains have a length of less than 30 ?m as measured along at least one cross-sectional dimension.
    Type: Application
    Filed: June 24, 2019
    Publication date: January 20, 2022
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Yanfei Li, Joseph Edward McCarthy, David John McEnroe, Mark Alejandro Quesada
  • Patent number: 11229131
    Abstract: Embodiments of an enclosure including a substrate having an anti-fingerprint surface are disclosed. The anti-fingerprint surface may include a textured surface, a coated surface or a coated textured surface that exhibits a low fingerprint visibility, when a fingerprint is applied to the anti-fingerprint surface. In one or more embodiments, the enclosure exhibits any one of the following attributes (1) radio, and microwave frequency transparency, as defined by a loss tangent of less than 0.03 and at a frequency range of between 15 MHz to 3.0 GHz; (2) infrared transparency; (3) a fracture toughness of greater than 0.6 MPa·m1/2; (4) a 4-point bend strength of greater than 350 MPa; (5) a Vickers hardness of at least 450 kgf/mm2 and a Vickers median/radial crack initiation threshold of at least 5 kgf; (6) a Young's Modulus in the range from about 50 GPa to about 100 GPa; and (7) a thermal conductivity of less than 2.0 W/m° C.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: January 18, 2022
    Assignee: Corning Incorporated
    Inventors: Jaymin Amin, Jaques Gollier, Shandon Dee Hart, Karl William Koch, III, Wageesha Senaratne
  • Publication number: 20220011477
    Abstract: A substrate for a display article includes (a) a primary surface; and (b) a textured region on at least a portion of the primary surface, the textured region comprising: (i) one or more higher surfaces residing at a higher mean elevation parallel to a base-plane disposed below the textured region and extending through the substrate; (ii) one or more lower surfaces residing at a lower mean elevation parallel to the base-plane that is less than the higher mean elevation; and (iii) a high-index material disposed on each of the one or more lower surfaces residing at the lower mean elevation, the high-index material forming one or more intermediate surfaces residing at an intermediate mean elevation parallel to the base-plane that is greater than the lower mean elevation but less than the higher mean elevation, the high-index material comprising an index of refraction that is greater than the index of refraction of the substrate.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 13, 2022
    Inventors: Shandon Dee Hart, Karl William Koch, III, Wageesha Senaratne, William Allen Wood
  • Publication number: 20220011466
    Abstract: A display article is described herein that includes: a substrate comprising a thickness and primary surface; a diffractive surface region defined by the primary surface; and an antireflective coating disposed on the diffractive surface region. The diffractive surface region comprises structural features that comprise different heights in a multimodal distribution. The substrate exhibits a sparkle of <4%, and a transmittance haze of <20%, each from an incident angle of 0°. The antireflection coating comprises a plurality of alternating high refractive index and low refractive index layers. Further, each of the low index layers comprises a refractive index of ?about 1.8, and each of the high index layers comprises a refractive index of >1.8. The article exhibits a first-surface average visible specular reflectance of less than 0.2% at an incident angle of 20°, and a maximum hardness of ?8 GPa in a Berkovich Indenter Hardness Test.
    Type: Application
    Filed: July 8, 2021
    Publication date: January 13, 2022
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Wageesha Senaratne, William Allen Wood
  • Publication number: 20220011468
    Abstract: A display article is described herein that includes: a substrate comprising a thickness and a primary surface; a textured surface region; and an antireflective coating disposed on the textured surface region. The textured surface region comprises structural features and an average texture height (Rtext) from 50 nm to 300 nm. The substrate exhibits a sparkle of less than 5%, as measured by PPD140, and a transmittance haze of less than 40%, at a 0° incident angle. The antireflective coating comprises alternating high refractive index and low refractive index layers. Each of the low index layers comprises a refractive index of less than or equal to 1.8, and each of the high index layers comprises a refractive index of greater than 1.8. The article also exhibits a first-surface average photopic specular reflectance (% R) of less than 0.3% at any incident angle from about 5° to 20° from normal at visible wavelengths.
    Type: Application
    Filed: July 8, 2021
    Publication date: January 13, 2022
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Cameron Robert Nelson, James Joseph Price, Jayantha Senawiratne, Florence Christine Monique Verrier, David Lee Weidman
  • Publication number: 20220011467
    Abstract: A display article is described herein that includes: a substrate comprising a thickness and a primary surface; and the primary surface having defined thereon a diffractive surface region. The diffractive surface region comprises a plurality of structural features that comprises a plurality of different heights in a multimodal distribution. Further, the substrate exhibits a sparkle of less than 4%, as measured by pixel power deviation (PPD140) at an incident angle of 0° from normal, a distinctness of image (DOI) of less than 80% at an incident angle of 20° from normal, and a transmittance haze of less than 20% from an incident angle of 0° from normal.
    Type: Application
    Filed: July 8, 2021
    Publication date: January 13, 2022
    Inventors: Jiangwei Feng, Shandon Dee Hart, Karl William Koch, III, Cameron Robert Nelson, Wageesha Senaratne, William Allen Wood
  • Publication number: 20210309565
    Abstract: An article is described herein which includes: a transparent substrate having a primary surface; and a protective film disposed on the primary surface, such that each of the substrate and the protective film have an optical transmittance of 20% or more in the visible spectrum, and such that the protective film includes at least one of: (1) a hardness of greater than 13 GPa, as measured by a Berkovich nanoindenter, or (2) an effective fracture toughness (Kc) of greater than 2.5 MPa·m1/2, as measured by indentation fracture at a depth of greater than 1 ?m.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 7, 2021
    Inventors: Bill Baloukas, Robert Alan Bellman, Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Ludvik Martinu, Charles Andrew Paulson, James Joseph Price, Jincheng Qian
  • Publication number: 20210230055
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be suppressed by inserting a nanoporous crack mitigating layer between the glass substrate and the film.
    Type: Application
    Filed: March 18, 2021
    Publication date: July 29, 2021
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, James Joseph Price, Paul Arthur Sachenik
  • Patent number: 11072558
    Abstract: An article includes: a transparent substrate having a primary surface; and a protective film disposed on the primary surface, such that each of the substrate and the protective film have an optical transmittance of 20% or more in the visible spectrum, and such that the protective film includes at least one of: (1) a hardness of greater than 13 GPa, as measured by a Berkovich nanoindenter, or (2) an effective fracture toughness (Kc) of greater than 2.5 MPa·m1/2, as measured by indentation fracture at a depth of greater than 1 ?m.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: July 27, 2021
    Assignees: Corning Incorporated, La Corporation de I'Ecole Polytechnique de Montreal
    Inventors: Bill Baloukas, Robert Alan Bellman, Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Ludvik Martinu, Charles Andrew Paulson, James Joseph Price, Jincheng Qian
  • Patent number: 11072559
    Abstract: An article includes a glass, glass-ceramic or ceramic substrate including a primary surface. A functional coating is disposed over the primary surface of the substrate. The coating includes a first portion disposed over the primary surface. One or more interrupting layers are disposed over the first portion. A second portion is disposed over the one or more interrupting layers. The one or more interrupting layers includes a microstructure different than one of the first and second portions and the coating has an average optical transmittance greater than about 10% over the visible wavelength range from about 450 nm to about 650 nm.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: July 27, 2021
    Assignee: Corning Incorporated
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson
  • Publication number: 20210221733
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article retains its average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be prevented by inserting a crack mitigating layer between the glass substrate and the film.
    Type: Application
    Filed: March 12, 2021
    Publication date: July 22, 2021
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, Fei Li, James Joseph Price, Chandan Kumar Saha
  • Publication number: 20210190993
    Abstract: Embodiments of articles with optical coatings are described herein. According to one embodiment, an article may comprise a substrate having a major surface, and an optical coating disposed on the major surface and forming an anti-reflective surface, the optical coating comprising an anti-reflective coating. The article may exhibit a maximum hardness of about 12 GPa or greater as measured on the anti-reflective surface by a Berkovich Indenter Hardness Test along an indentation depth of about 100 nm or greater. The article may exhibit a single side average light reflectance measured at the anti-reflective surface of about 8% or less over an optical wavelength regime in the range from about 400 nm to about 800 nm. The article may exhibit an average light transmission of about 90% or greater over an optical wavelength regime in the range from about 400 nm to about 800 nm.
    Type: Application
    Filed: March 5, 2021
    Publication date: June 24, 2021
    Inventors: Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson
  • Publication number: 20210181382
    Abstract: According to one or more embodiments described herein, a coated article may comprise: a transparent substrate having a major surface, the major surface comprising a textured or rough surface inducing light scattering; and an optical coating disposed on the major surface of the transparent substrate and forming an air-side surface, the optical coating comprising one or more layers of material, the optical coating having a physical thickness of greater than 300 nm, wherein the coated article exhibits a maximum hardness of about 10 GPa or greater as measured on the air-side surface by a Berkovich Indenter Hardness Test along an indentation depth of about 50 nm or greater.
    Type: Application
    Filed: February 11, 2021
    Publication date: June 17, 2021
    Inventors: Joan Deanna Gregorski, Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Charles Andrew Paulson, James Joseph Price
  • Patent number: 11016680
    Abstract: Embodiments of durable, scratch resistant articles are described. The articles have coatings that provide specific reflectance, transmission, and/or color properties, as well as high hardness. Some embodiments have low reflectance, and high color. Some embodiments have high reflectance and neutral color. Some embodiments have high reflectance and high color. In some embodiments, the articles may be sunglasses with an optical coating, a scratch resistant mirror with an optical coating, or a consumer electronic product with an optical coating.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 25, 2021
    Assignee: Corning Incorporated
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Charles Andrew Paulson, James Joseph Price
  • Publication number: 20210139370
    Abstract: Embodiments of a article including include a substrate and a patterned coating are provided. In one or more embodiments, when a strain is applied to the article, the article exhibits a failure strain of 0.5% or greater. Patterned coating may include a particulate coating or may include a discontinuous coating. The patterned coating of some embodiments may cover about 20% to about 75% of the surface area of the substrate. Methods for forming such articles are also provided.
    Type: Application
    Filed: January 25, 2021
    Publication date: May 13, 2021
    Inventors: Shandon Dee Hart, Guangli Hu, Nicholas James Smith
  • Patent number: 11002885
    Abstract: Embodiments of articles with optical coatings are described herein. According to one embodiment, an article may comprise a substrate having a major surface, and an optical coating disposed on the major surface and forming an anti-reflective surface, the optical coating comprising an anti-reflective coating. The article may exhibit a maximum hardness of about 12 GPa or greater as measured on the anti-reflective surface by a Berkovich Indenter Hardness Test along an indentation depth of about 100 nm or greater. The article may exhibit a single side average light reflectance measured at the anti-reflective surface of about 8% or less over an optical wavelength regime in the range from about 400 nm to about 800 nm. The article may exhibit an average light transmission of about 90% or greater over an optical wavelength regime in the range from about 400 nm to about 800 nm.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: May 11, 2021
    Assignee: Corning Incorporated
    Inventors: Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson
  • Publication number: 20210130230
    Abstract: An article includes a glass, glass-ceramic or ceramic substrate including a primary surface. A functional coating is disposed over the primary surface of the substrate. The coating includes a first portion disposed over the primary surface. One or more interrupting layers are disposed over the first portion. A second portion is disposed over the one or more interrupting layers. The one or more interrupting layers includes a microstructure different than one of the first and second portions and the coating has an average optical transmittance greater than about 10% over the visible wavelength range from about 450 nm to about 650 nm.
    Type: Application
    Filed: July 30, 2018
    Publication date: May 6, 2021
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson
  • Publication number: 20210122671
    Abstract: An article includes a substrate including a glass, glass-ceramic, or ceramic composition and a primary surface. An optical film is disposed on the primary surface. The film includes a first plurality of layers which includes diamond or diamond-like carbon and a second plurality of layers. Each layer of the second plurality of layers is arranged in an alternating manner with each layer of the first plurality of layers. The optical film includes an average photopic light reflectance of about 2.0% or less and a transmittance of about 85% or greater from about 500 nm to about 800 nm.
    Type: Application
    Filed: July 30, 2018
    Publication date: April 29, 2021
    Inventors: Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson
  • Publication number: 20210087105
    Abstract: An article that includes: a glass-based substrate comprising opposing major surfaces; a crack mitigating composite over one of the major surfaces, the composite comprising an inorganic element and a polymeric element; and a hard film disposed on the crack mitigating composite comprising an elastic modulus greater than or equal to the elastic modulus of the glass-based substrate. The crack mitigating composite is characterized by an elastic modulus of greater than 30 GPa. Further, the hard film comprises at least one of a metal-containing oxide, a metal-containing oxynitride, a metal-containing nitride, a metal-containing carbide, a silicon-containing polymer, a carbon, a semiconductor, and combinations thereof.
    Type: Application
    Filed: March 23, 2018
    Publication date: March 25, 2021
    Inventors: Robert Alan Bellman, Shandon Dee Hart, Jenny Kim, Karl William Koch, III, James Joseph Price, Hannah Shenouda