Patents by Inventor Shandon Dee Hart

Shandon Dee Hart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200170134
    Abstract: An ultraviolet light-resistant article that includes: a substrate having a glass or glass-ceramic composition and first and second primary surfaces; an ultraviolet light-absorbing element having a an absorptivity greater than 50% at wavelengths from about 100 nm to about 380 nm and a thickness between about 10 nm and about 100 nm; and a dielectric stack formed with a plasma-enhanced process. Further, the light-absorbing element is between the substrate and the dielectric stack. Alternatively, the light-absorbing element can include one or more ultraviolet light-resistant layers disposed within the dielectric stack over the first primary surface.
    Type: Application
    Filed: December 16, 2019
    Publication date: May 28, 2020
    Inventors: Kaveh Adib, Robert Alan Bellman, Andrea Weiss Bookbinder, Shandon Dee Hart, Albert Peter Heberle, Karl William Koch, III, Lin Lin, Charles Andrew Paulson, Vitor Marino Schneider
  • Publication number: 20200156992
    Abstract: An article includes: a transparent substrate having a primary surface; and a protective film disposed on the primary surface, such that each of the substrate and the protective film have an optical transmittance of 20% or more in the visible spectrum, and such that the protective film includes at least one of: (1) a hardness of greater than 13 GPa, as measured by a Berkovich nanoindenter, or (2) an effective fracture toughness (Kc) of greater than 2.5 MPa·m1/2, as measured by indentation fracture at a depth of greater than 1 ?m.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 21, 2020
    Inventors: Bill Baloukas, Robert Alan Bellman, Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Ludvik Martinu, Charles Andrew Paulson, James Joseph Price, Jincheng Qian
  • Publication number: 20200158916
    Abstract: An optical film structure that includes: an optical film comprising a physical thickness from about 50 nm to about 3000 nm, and a silicon-containing nitride or a silicon-containing oxynitride. The optical film exhibits a maximum hardness of greater than 18 GPa, as measured by a Berkovich Indenter Hardness Test over an indentation depth range from about 100 nm to about 500 nm on a hardness stack comprising a test optical film with a physical thickness of about 2 microns disposed on an inorganic oxide test substrate, the test optical film having the same composition as the optical film. Further, the optical film exhibits an optical extinction coefficient (k) of less than 1×10?2 at a wavelength of 400 nm and a refractive index (n) of greater than 1.8 at a wavelength of 550 nm.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 21, 2020
    Inventors: Shandon Dee Hart, Chang-gyu Kim, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Dong-gun Moon, Jung-keun Oh, Charles Andrew Paulson, James Joseph Price
  • Publication number: 20200158917
    Abstract: An article that includes: an inorganic oxide substrate having opposing major surfaces; and an optical film structure disposed on a first major surface of the substrate, the optical film structure comprising one or more of a silicon-containing oxide, a silicon-containing nitride and a silicon-containing oxynitride and a physical thickness from about 50 nm to less than 500 nm. The article exhibits a hardness of 8 GPa or greater measured at an indentation depth of about 100 nm or a maximum hardness of 9 GPa or greater measured over an indentation depth range from about 100 nm to about 500 nm, the hardness and the maximum hardness measured by a Berkovich Indenter Hardness Test. Further, the article exhibits a single-side photopic average reflectance that is less than 1%.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Shandon Dee Hart, Karl William Koch, III, Lin Lin, James Joseph Price
  • Patent number: 10649588
    Abstract: The disclosure is directed to piezoelectric film structures and sensors, and display assemblies using same. The piezoelectric film structure is transparent and includes: a substrate; a bottom optical layer disposed on or above the substrate; a bottom conducting layer disposed on or above the bottom optical layer; at least one piezoelectric layer disposed on or above the bottom conducting layer; a top conducting layer disposed on or above the at least one piezoelectric layer; and a top optical layer disposed on or above the top conducting layer. The sensor includes the piezoelectric film structure electrically connected to a signal processing system. The display assembly includes the sensor operably arranged relative to a display device. The piezoelectric film structures and sensors can be configured to determine one or more touch-sensing features associated with a touch event.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: May 12, 2020
    Assignee: Corning Incorporated
    Inventors: Jaymin Amin, Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson, William James Miller, Rostislav Vatchev Roussev
  • Publication number: 20200126512
    Abstract: A method, of reducing display device energy consumption, including: (a) determining lighting conditions ambient to a display device; (b) determining content that a user chooses to view on the display device; (c) calculating the user's perception of display quality using an image appearance model; and (d) adjusting, when the perceived display quality is higher than a target display quality, display device conditions so that the perceived display quality matches the target display quality so as to reduce energy consumption. An apparatus utilizing the method so as to reduce energy consumption while providing an aesthetically pleasing viewing experience to a user.
    Type: Application
    Filed: October 16, 2019
    Publication date: April 23, 2020
    Inventors: Jaymin Amin, Shandon Dee Hart, Brooke Amber Hathaway, Karl William Koch, III, Carlo Anthony Kosik Williams, Alexandre Michel Mayolet
  • Patent number: 10620344
    Abstract: Embodiments of articles including a low-contrast anti-reflection coating are disclosed. The coated surface of such articles exhibits a reduced difference in reflectance between a pristine state and when a surface defect is present. In one or more embodiments, the coated surface of such articles exhibits a first average reflectance in the range from about 0.6% to about 6.0% in a pristine condition and a second average reflectance of about 8% or less after removal of a surface thickness of the anti-reflection coating. In other embodiments, the coated substrate exhibits a second average reflectance of about 10% or less, when the coated surface comprises a contaminant. In some embodiments, the coated substrate exhibits a first color coordinate (a*1, b*1) in a pristine condition and a second color coordinate (a*2, b*2) after the presence of a surface defect such that ?a*b* is about 6 or less.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: April 14, 2020
    Assignee: Corning Incorporated
    Inventors: Shandon Dee Hart, Karl William Koch, Charles Andrew Paulson
  • Publication number: 20200101692
    Abstract: An article, comprising an optical layer disposed on a transparent layer, can have a maximum hardness of about 10 GigaPascals (GPa) to about 50 GPa. The optical layer can comprise a first portion and a second portion that are contiguous with one another at one major surface the optical layer. The portions may exhibit specific differences in average reflectance value, observed color, and/or angular color shift relative to each other. In some embodiments, a photopic average reflectance of the first portion may differ from an average reflectance of the second portion by about 5% or more. In other embodiments, a color of the first portion can have a color difference from a color of the second portion of about 4 or more in CIE color coordinate space.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 2, 2020
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Charles Andrew Paulson, James Joseph Price
  • Publication number: 20200057177
    Abstract: An article that includes: an inorganic oxide substrate having opposing major surfaces; and an optical film structure disposed on a first major surface of the substrate, the optical film structure comprising one or more of a silicon-containing oxide, a silicon-containing nitride and a silicon-containing oxynitride and a physical thickness from about 50 nm to less than 500 nm. The article exhibits a hardness of 8 GPa or greater measured at an indentation depth of about 100 nm or a maximum hardness of 9 GPa or greater measured over an indentation depth range from about 100 nm to about 500 nm, the hardness and the maximum hardness measured by a Berkovich Indenter Hardness Test. Further, the article exhibits a single-side photopic average reflectance that is less than 1%.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 20, 2020
    Inventors: Shandon Dee Hart, Karl William Koch, III, Lin Lin, James Joseph Price
  • Publication number: 20200039873
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article retains its average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be prevented by inserting a crack mitigating layer between the glass substrate and the film.
    Type: Application
    Filed: October 9, 2019
    Publication date: February 6, 2020
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, Fei Li, James Joseph Price, Chandon Kumar Saha
  • Patent number: 10548234
    Abstract: An ultraviolet light-resistant article that includes: a substrate having a glass or glass-ceramic composition and first and second primary surfaces; an ultraviolet light-absorbing element having a an absorptivity greater than 50% at wavelengths from about 100 nm to about 380 nm and a thickness between about 10 nm and about 100 nm; and a dielectric stack formed with a plasma-enhanced process. Further, the light-absorbing element is between the substrate and the dielectric stack. Alternatively, the light-absorbing element can include one or more ultraviolet light-resistant layers disposed within the dielectric stack over the first primary surface.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: January 28, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Kaveh Adib, Robert Alan Bellman, Andrea Weiss Bookbinder, Shandon Dee Hart, Albert Peter Heberle, Karl William Koch, III, Lin Lin, Charles Andrew Paulson, Vitor Marino Schneider
  • Publication number: 20200025976
    Abstract: Embodiments of articles with optical coatings are described herein. According to one embodiment, an article may comprise a substrate having a major surface, and an optical coating disposed on the major surface and forming an anti-reflective surface, the optical coating comprising an anti-reflective coating. The article may exhibit a maximum hardness of about 12 GPa or greater as measured on the anti-reflective surface by a Berkovich Indenter Hardness Test along an indentation depth of about 100 nm or greater. The article may exhibit a single side average light reflectance measured at the anti-reflective surface of about 8% or less over an optical wavelength regime in the range from about 400 nm to about 800 nm. The article may exhibit an average light transmission of about 90% or greater over an optical wavelength regime in the range from about 400 nm to about 800 nm.
    Type: Application
    Filed: January 16, 2019
    Publication date: January 23, 2020
    Inventors: Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson
  • Patent number: 10487009
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article retains its average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be prevented by inserting a crack mitigating layer between the glass substrate and the film.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: November 26, 2019
    Assignee: Corning Incorporated
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, Fei Li, James Joseph Price, Chandan Kumar Saha
  • Publication number: 20190337841
    Abstract: A coated article includes a substrate having a major surface, and an optical coating disposed on the major surface of the substrate. At least a portion of the optical coating includes a residual compressive stress of about 50 MPa or more. The coated article has strain-to-failure of about 0.5% or more as measured by a Ring-on-Ring Tensile Testing Procedure. The coated article has an average photopic transmission of about 80% or greater.
    Type: Application
    Filed: December 19, 2017
    Publication date: November 7, 2019
    Inventors: Shandon Dee Hart, Guangli Hu, Charles Andrew Paulson, James Joseph Price
  • Publication number: 20190339425
    Abstract: According to one or more embodiments described herein, a coated article may comprise a transparent substrate and an optical coating. The transparent substrate may have a major surface, and the optical coating may be disposed on the major surface of the transparent substrate and form an air-side surface. The optical coating may comprise one or more layers of deposited material and one or more light-altering features which may reduce oscillations in the reflectance spectrum of the coated article. The coated article may exhibit a maximum hardness of about 8 GPa or greater, have an average photopic transmittance of about 50% or greater, and exhibit an angular color shift of less than about 10 from a reference illumination angle in a range of 0-10 degrees to an incident illumination angle in a range of 30-60 degrees relative to the air-side surface.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Robert Alan Bellman, Shandon Dee Hart, Karl William Koch, III
  • Patent number: 10451773
    Abstract: Embodiments of articles with optical coatings are described herein. According to one embodiment, an article may comprise a substrate having a major surface, and an optical coating disposed on the major surface and forming an anti-reflective surface, the optical coating comprising an anti-reflective coating. The article may exhibit a maximum hardness of about 12 GPa or greater as measured on the anti-reflective surface by a Berkovich Indenter Hardness Test along an indentation depth of about 100 nm or greater. The article may exhibit a single side average light reflectance measured at the anti-reflective surface of about 8% or less over an optical wavelength regime in the range from about 400 nm to about 800 nm. The article may exhibit an average light transmission of about 90% or greater over an optical wavelength regime in the range from about 400 nm to about 800 nm.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: October 22, 2019
    Assignee: Corning Incorporated
    Inventors: Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson
  • Patent number: 10444408
    Abstract: Embodiments of this disclosure pertain to articles that exhibit scratch-resistance and improved optical properties. In some examples, the article exhibits a color shift of about 2 or less, when viewed at an incident illumination angle in the range from about 0 degrees to about 60 degrees from normal under an illuminant. In one or more embodiments, the articles include a substrate, and an optical film disposed on the substrate. The optical film includes a scratch-resistant layer and an optical interference layer. The optical interference layer may include one or more sub-layers that exhibit different refractive indices. In one example, the optical interference layer includes a first low refractive index sub-layer and a second a second high refractive index sub-layer. In some instances, the optical interference layer may include a third sub-layer.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 15, 2019
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson, James Joseph Price
  • Patent number: 10436945
    Abstract: Embodiments of durable, anti-reflective articles are described. In one or more embodiments, the article includes a substrate and an optical coating disposed on the major surface. The optical coating includes an anti-reflective coating and a scratch-resistant coating forming an anti-reflective surface. The article exhibits a maximum hardness of 12 GPa or greater, as measured on the anti-reflective surface by a Berkovich Indenter Hardness Test along an indentation depth of about 100 nm or greater. The articles of some embodiments exhibit a single side average light reflectance measured at the anti-reflective surface of about 8% or less over an optical wavelength regime in the range from about 400 nm to about 800 nm and a reference point color shift in transmittance or reflectance of less than about 2. In some embodiments, the article exhibits an angular color shift of about 5 or less at all angles from normal incidence to an incident illumination angle that is 20 degrees or greater.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: October 8, 2019
    Assignee: Corning Incorporated
    Inventors: Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson, James Joseph Price
  • Patent number: 10416352
    Abstract: Embodiments of articles with optical coatings are described herein. According to one embodiment, an article may comprise a substrate having a major surface, and an optical coating disposed on the major surface and forming an anti-reflective surface, the optical coating comprising an anti-reflective coating. The article may exhibit a maximum hardness of about 12 GPa or greater as measured on the anti-reflective surface by a Berkovich Indenter Hardness Test along an indentation depth of about 100 nm or greater. The article may exhibit a single side average light reflectance measured at the anti-reflective surface of about 8% or less over an optical wavelength regime in the range from about 400 nm to about 800 nm. The article may exhibit an average light transmission of about 90% or greater over an optical wavelength regime in the range from about 400 nm to about 800 nm.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: September 17, 2019
    Assignee: Corning Incorporated
    Inventors: Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson
  • Patent number: 10401539
    Abstract: According to one or more embodiments described herein, a coated article may comprise a transparent substrate and an optical coating. The transparent substrate may have a major surface, and the optical coating may be disposed on the major surface of the transparent substrate and form an air-side surface. The optical coating may comprise one or more layers of deposited material and one or more light-altering features which may reduce oscillations in the reflectance spectrum of the coated article. The coated article may exhibit a maximum hardness of about 8 GPa or greater, have an average photopic transmittance of about 50% or greater, and exhibit an angular color shift of less than about 10 from a reference illumination angle in a range of 0-10 degrees to an incident illumination angle in a range of 30-60 degrees relative to the air-side surface.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: September 3, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Robert Alan Bellman, Shandon Dee Hart, Karl William Koch, III