Patents by Inventor Shane Murray

Shane Murray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960026
    Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: April 16, 2024
    Assignee: NVIDIA Corporation
    Inventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
  • Publication number: 20240096102
    Abstract: Systems and methods are disclosed that relate to freespace detection using machine learning models. First data that may include object labels may be obtained from a first sensor and freespace may be identified using the first data and the object labels. The first data may be annotated to include freespace labels that correspond to freespace within an operational environment. Freespace annotated data may be generated by combining the one or more freespace labels with second data obtained from a second sensor, with the freespace annotated data corresponding to a viewable area in the operational environment. The viewable area may be determined by tracing one or more rays from the second sensor within the field of view of the second sensor relative to the first data. The freespace annotated data may be input into a machine learning model to train the machine learning model to detect freespace using the second data.
    Type: Application
    Filed: August 7, 2023
    Publication date: March 21, 2024
    Inventors: Alexander POPOV, David NISTER, Nikolai SMOLYANSKIY, PATRIK GEBHARDT, Ke CHEN, Ryan OLDJA, Hee Seok LEE, Shane MURRAY, Ruchi BHARGAVA, Tilman WEKEL, Sangmin OH
  • Publication number: 20240061075
    Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space, in both highway and urban scenarios. RADAR detections may be accumulated, ego-motion-compensated, orthographically projected, and fed into a neural network(s). The neural network(s) may include a common trunk with a feature extractor and several heads that predict different outputs such as a class confidence head that predicts a confidence map and an instance regression head that predicts object instance data for detected objects. The outputs may be decoded, filtered, and/or clustered to form bounding shapes identifying the location, size, and/or orientation of detected object instances. The detected object instances may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 22, 2024
    Inventors: Alexander POPOV, Nikolai SMOLYANSKIY, Ryan OLDJA, Shane Murray, Tilman WEKEL, David NISTER, Joachim PEHSERL, Ruchi BHARGAVA, Sangmin OH
  • Patent number: 11885907
    Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space, in both highway and urban scenarios. RADAR detections may be accumulated, ego-motion-compensated, orthographically projected, and fed into a neural network(s). The neural network(s) may include a common trunk with a feature extractor and several heads that predict different outputs such as a class confidence head that predicts a confidence map and an instance regression head that predicts object instance data for detected objects. The outputs may be decoded, filtered, and/or clustered to form bounding shapes identifying the location, size, and/or orientation of detected object instances. The detected object instances may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: January 30, 2024
    Assignee: NVIDIA Corporation
    Inventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
  • Publication number: 20230236314
    Abstract: In various examples, methods and systems are provided for sampling and transmitting the most useful information from a radar signal representing a scene while staying within the computational and storage confines of a standard automotive radar sensor and the bandwidth constraints of a standard communication link between a radar sensor and processing unit. Disclosed approaches may select a patch of frequency bins that correspond to radar signals based at least on proximities of the frequency bins to one or more frequency bins corresponding to at least one peak and/or detection point in the radar signals. Data representing samples corresponding to the patch of frequency bins may be transmitted to the processing unit and applied to one or more machine learning models in order to accurately classify, identify, and/or track objects.
    Type: Application
    Filed: January 26, 2022
    Publication date: July 27, 2023
    Inventors: Feng Jin, Nitin Bharadwaj, Shane Murray, James Hockridge Critchley, Sangmin Oh
  • Publication number: 20230145218
    Abstract: In various examples, systems are described herein that may evaluate one or more radar detections against a set of filter criteria, the one or more radar detections generated using at least one sensor of a vehicle. The system may then accumulate, based at least on the evaluating, the one or more radar detections to one or energy levels that correspond to one or more locations of the one or more radar detections in a zone positioned relative to the vehicle. The system may then determine one or more safety statuses associated with the zone based at least on one or more magnitudes of the one or more energy levels. The system may transmit data, or take some other action, that causes control of the vehicle based at least on the one or more safety statuses.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 11, 2023
    Inventors: Shane Murray, Sangmin Oh
  • Publication number: 20230049567
    Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
    Type: Application
    Filed: October 28, 2022
    Publication date: February 16, 2023
    Inventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
  • Patent number: 11531088
    Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: December 20, 2022
    Assignee: NVIDIA CORPORATION
    Inventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
  • Publication number: 20210156960
    Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space, in both highway and urban scenarios. RADAR detections may be accumulated, ego-motion-compensated, orthographically projected, and fed into a neural network(s). The neural network(s) may include a common trunk with a feature extractor and several heads that predict different outputs such as a class confidence head that predicts a confidence map and an instance regression head that predicts object instance data for detected objects. The outputs may be decoded, filtered, and/or clustered to form bounding shapes identifying the location, size, and/or orientation of detected object instances. The detected object instances may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
    Type: Application
    Filed: March 31, 2020
    Publication date: May 27, 2021
    Inventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
  • Publication number: 20210156963
    Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
    Type: Application
    Filed: March 31, 2020
    Publication date: May 27, 2021
    Inventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
  • Publication number: 20200107986
    Abstract: A device for stimulation, the device comprising a hollow body having a first end and a second end, wherein a first connection mechanism is located distal to the first end and the second end has an opening to an interior cavity of the hollow body, a handle attached to the first connection mechanism, a motor positioned within the interior cavity of the hollow body, and a lower panel mechanically secured to the motor, wherein when the motor is activated the lower panel moves in a predetermined pattern.
    Type: Application
    Filed: October 8, 2018
    Publication date: April 9, 2020
    Inventor: Shane Murray
  • Patent number: 10349032
    Abstract: Described are occupant positioning systems, and methods of use thereof, which combine image capture and radar or ultrasonic sensors, determine the head position and/or velocity of a vehicle occupant's head in three dimensions for use in a driver monitoring application. The driver monitoring applications may include features such as driver drowsiness estimation and indication, driver attention monitoring, driver gaze direction and driver gaze positioning, driver identification, head-up display adjustment and automatic sun blocking. These are features that can improve the operational safety of the vehicle.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: July 9, 2019
    Assignee: Veoneer US, Inc.
    Inventors: Thorbjorn Jemander, Shane Murray
  • Patent number: 10247817
    Abstract: Parameters of a propagated object state in a radar tracking system are converted from an object state domain to a measurement domain. The measurement domain includes parameters of a superposition of a chirp and a Doppler frequency of the reflected signal and the Doppler frequency. Deltas between measured states and propagated states are computed in the measurement domain to improve updating of the object state. An object track is more accurately updated based on the object state delta. Data association may be performed simultaneously in both the measurement domain and object domain. Propagated object state parameters in object domain coordinates can be checked for signal collisions to avoid signal collision errors. An improved noise model is also constructed in the measurement domain.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: April 2, 2019
    Assignee: Veoneer US, Inc.
    Inventors: Donald Spencer, Shane Murray
  • Patent number: 10246100
    Abstract: A method of predicting a future path of a vehicle, comprising the steps of: sensing a speed, and direction, and yaw rate of the vehicle; sensing a steering angle of the vehicle; sensing a driving lane near the vehicle, or along which the vehicle is being driven; calculating a first path prediction, for a first period of time following the current time, the first path prediction comprising a trajectory predicted based on the sensed speed and the direction and the yaw rate; calculating a second path prediction, for a second period of time, at least some of which is later than the first period of time, which assumes that a steering action arising from changes in the steering angle will take effect on the vehicle; calculating a third path prediction, for a third period of time, at least some of which is later than the second period of time, which assumes that the driver of the vehicle will control the trajectory of the vehicle to attempt to follow at least substantially the driving lane; and formulating a combine
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: April 2, 2019
    Assignee: VEONEER SWEDEN AB
    Inventor: Shane Murray
  • Publication number: 20180335513
    Abstract: Parameters of a propagated object state in a radar tracking system are converted from an object state domain to a measurement domain. The measurement domain includes parameters of a superposition of a chirp and a Doppler frequency of the reflected signal and the Doppler frequency. Deltas between measured states and propagated states are computed in the measurement domain to improve updating of the object state. An object track is more accurately updated based on the object state delta. Data association may be performed simultaneously in both the measurement domain and object domain. Propagated object state parameters in object domain coordinates can be checked for signal collisions to avoid signal collision errors. An improved noise model is also constructed in the measurement domain.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 22, 2018
    Applicant: Veoneer US, Inc.
    Inventors: Donald Spencer, Shane Murray
  • Publication number: 20180281814
    Abstract: A method of predicting a future path of a vehicle, comprising the steps of: sensing a speed, and direction, and yaw rate of the vehicle; sensing a steering angle of the vehicle; sensing a driving lane near the vehicle, or along which the vehicle is being driven; calculating a first path prediction, for a first period of time following the current time, the first path prediction comprising a trajectory predicted based on the sensed speed and the direction and the yaw rate; calculating a second path prediction, for a second period of time, at least some of which is later than the first period of time, which assumes that a steering action arising from changes in the steering angle will take effect on the vehicle; calculating a third path prediction, for a third period of time, at least some of which is later than the second period of time, which assumes that the driver of the vehicle will control the trajectory of the vehicle to attempt to follow at least substantially the driving lane; and formulating a combine
    Type: Application
    Filed: November 6, 2015
    Publication date: October 4, 2018
    Applicant: AUTOLIV DEVELOPMENT AB
    Inventor: SHANE MURRAY
  • Publication number: 20180096475
    Abstract: Described are occupant positioning systems, and methods of use thereof, which combine image capture and radar or ultrasonic sensors, determine the head position and/or velocity of a vehicle occupant's head in three dimensions for use in a driver monitoring application. The driver monitoring applications may include features such as driver drowsiness estimation and indication, driver attention monitoring, driver gaze direction and driver gaze positioning, driver identification, head-up display adjustment and automatic sun blocking. These are features that can improve the operational safety of the vehicle.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Applicant: Autoliv ASP, Inc.
    Inventors: Thorbjorn Jemander, Shane Murray
  • Patent number: 9886858
    Abstract: The present invention relates to a vehicle safety system and method including a detection system, an emergency control unit and one or more safety devices. The detection system detects a target vehicle positioned longitudinally and laterally displaced relative the detection system, and defines a target vehicle rectangle that at least partly encloses the target vehicle, and constitutes an approximation of the target vehicle. The target vehicle rectangle forms a boundary (k) positioned along a second bearing having a second azimuth angle (??1+??2) with reference to a first reference line. The target vehicle rectangle forms a first corner (j) closest to the detection system and positioned along a first bearing having a first azimuth angle (??1) with reference to the first reference line. The detection system calculates a yaw movement (?A) of the target vehicle using the first and second azimuth angles (??1, ??1+??2).
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: February 6, 2018
    Assignee: AUTOLIV DEVELOPMENT AB
    Inventors: Shane Murray, Ulf Nordqvist
  • Publication number: 20170309182
    Abstract: The present invention relates to a vehicle safety system and method including a detection system, an emergency control unit and one or more safety devices. The detection system detects a target vehicle positioned longitudinally and laterally displaced relative the detection system, and defines a target vehicle rectangle that at least partly encloses the target vehicle, and constitutes an approximation of the target vehicle. The target vehicle rectangle forms a boundary (k) positioned along a second bearing having a second azimuth angle (??1+??2) with reference to a first reference line. The target vehicle rectangle forms a first corner (j) closest to the detection system and positioned along a first bearing having a first azimuth angle (??1) with reference to the first reference line. The detection system calculates a yaw movement (?A) of the target vehicle using the first and second azimuth angles (??1, ??1??2).
    Type: Application
    Filed: October 2, 2015
    Publication date: October 26, 2017
    Inventors: Shane Murray, Ulf Nordqvist
  • Publication number: 20170231863
    Abstract: The present invention provides a vibratory device used by holding in hand for general massage of skin as well as stimulation of erogenous zones. The vibratory device generally comprises a body, a vibrating plate positioned on the lower end of the body, a hand grip region at the upper end of the body. A speed controller is provided near the hand grip to control the speed of vibration. The vibratory device further can have a massage pad removably attached to the vibrating plate to absorb the vibrations. A soft elastomeric material such as CyberSkin can be removably attached to the massage pad for providing enhanced stimulation and sensitivity to the skin. The vibratory device provides stimulating erogenous zones directly on the skin or over the clothes in the crotch area for sexual exploration. The vibratory device allows easy control of the intensity and frequency of vibrations.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 17, 2017
    Inventor: Shane Murray