Patents by Inventor Shankar Chandrasekaran

Shankar Chandrasekaran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110230745
    Abstract: An electrode system for the measurement of biopotential signals includes a substrate. A microelectrode is coupled to the substrate. An accelerometer is coupled to the substrate. A biopotential amplifier is electrically coupled to the microelectrode and acceleration measurement circuit is electrically coupled to the accelerometer. A method of measuring a biopotential from a patient includes sensing a biopotential with a microelectrode. The biopotential is amplified with an amplifier in electrical communication with the microelectrode. A movement of the electrode is sensed with an accelerometer integrated with the electrode substrate. The sensed biopotential and the sensed movement are provided to an electronic controller. Portions of the sensed biopotential that correspond to sensed movement are identified as artifact contaminated portions.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Applicant: General Electric Company
    Inventors: Shankar Chandrasekaran, Juha Virtanen, Shivappa Goravar
  • Publication number: 20110166800
    Abstract: A flow sensor assembly is provided and includes a flow conduit configured to impart a disturbance to a flow, multiple sensors disposed at respective sensing locations along the flow conduit. Each sensor is responsive to the disturbance of the flow and generates a corresponding response signal. The flow sensor assembly further includes a processor operably connected to each sensor, the processor being configured to compute a cross-correlation function between the response signals generated by said sensors, and determine a flow rate and a direction for the flow through the conduit based on the computed cross-correlation function. Additional flow sensor assembly arrangements are also disclosed.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ertugrul Berkcan, Shankar Chandrasekaran, Bo Li, Stanton Earl Weaver, JR.
  • Publication number: 20110075142
    Abstract: Optical detection systems and optical spectrometric systems are presented. One embodiment is a parallelized optical detection system. The detection system includes collector optics configured to receive an input optical signal, a plurality of optical filters and a plurality of tunable cavities. The collector optics includes at least one collector lens and at least one fiber multiplexer. The plurality of optical filters are configured to receive the input optical signal from the fiber multiplexer, and have serially varying pass band configured to filter the input optical signal at respective bandwidths. Each of the plurality of tunable cavities is optically coupled to each filter of the respective plurality of optical filters to receive a respective filtered output signal. The plurality of tunable cavities have band-pass frequencies with center frequencies staggered.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sandip Maity, Ayan Banerjee, Shankar Chandrasekaran, Anis Zribi, Shivappa Ningappa Goravar, David Cecil Hays, Dirk Lange, Renato Guida
  • Publication number: 20110024331
    Abstract: The present application discloses a process for the high throughput separation of at least one distinct biological material from a sample using magnetic tags and a magnetic separation set up capable of processing at least about 106 units/second. A magnetic field gradient is used to deflect target material bearing a magnet tag from one laminar flow stream to another so that the magnetically tagged target material exits a separation chamber via a different outlet than the rest of the sample. The process is applicable to isolating several distinct biological materials by directing each via magnetic deflection to its own unique outlet. The application also discloses a system for performing the process and a kit that includes the system and the magnetic tags.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Applicant: General Electric Company
    Inventors: Sunil Srinivasa Murthy, Aaron Joseph Dulgar-Tulloch, James William Bray, Shankar Chandrasekaran, Arvind Kumar Tiwari
  • Patent number: 7796269
    Abstract: According to one embodiment, a micro-electrical mechanical system apparatus includes (i) a comb drive actuator having at least one irregularly shaped finger and (ii) a movable Fabry-Perot filter cavity mirror coupled to the comb drive actuator. According to some embodiments, a relationship between a voltage applied to the comb drive actuator and an amount of displacement associated with the movable mirror is substantially linear.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: September 14, 2010
    Assignee: Morpho Detection, Inc.
    Inventors: Anis Zribi, Glenn S. Claydon, Long Que, Stacey Kennerly, Shankar Chandrasekaran, Shivappa Goravar, David C. Hays, Ayan Banerjee
  • Publication number: 20100220331
    Abstract: According to some embodiments, a micro-electrical mechanical system apparatus includes an actuator within a plane and at least one movable mirror oriented substantially normal to the plane. The actuator may move the movable mirror with respect to a fixed mirror oriented substantially normal to the plane and substantially parallel to the movable mirror. The space between the fixed and movable mirrors might comprise, for example, a Fabry-Perot filter cavity for a spectrometer.
    Type: Application
    Filed: June 6, 2006
    Publication date: September 2, 2010
    Inventors: Anis Zribi, Glenn S. Claydon, David C. Hays, Stacey Kennerly, Long Que, Shankar Chandrasekaran, Shivappa Goravar, Ayan Banerjee
  • Publication number: 20100182608
    Abstract: According to one embodiment, a micro-electrical mechanical system apparatus includes (i) a comb drive actuator having at least one irregularly shaped finger and (ii) a movable Fabry-Perot filter cavity mirror coupled to the comb drive actuator. According to some embodiments, a relationship between a voltage applied to the comb drive actuator and an amount of displacement associated with the movable mirror is substantially linear.
    Type: Application
    Filed: August 10, 2006
    Publication date: July 22, 2010
    Inventors: Anis Zribi, Glenn S. Claydon, Long Que, Stacey Kennerly, Shankar Chandrasekaran, Shivappa Goravar, David C. Hays, Ayan Banerjee
  • Patent number: 7741832
    Abstract: A micro-electro-mechanical system (MEMS) current sensor for sensing a magnetic field produced by an electrical current flowing in a conductor includes a first fixed element and a moving element. The moving element is spaced away from the first fixed element and is movable relative to the fixed element responsive to a magnetic field produced by an electrical current flowing in a conductor for providing a mechanical indication of a strength of the magnetic field. The sensor also includes a tunneling current generator for generating a tunneling current between the first fixed element and the moving element and a tunneling current monitor for monitoring a change in the tunneling current responsive to the mechanical indication to provide an indication of a value of the electrical current in the conductor.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: June 22, 2010
    Assignee: General Electric Company
    Inventors: Ertugrul Berkcan, Christopher James Kapusta, Marco Francesco Aimi, Shankar Chandrasekaran, Glenn Scott Claydon
  • Patent number: 7705583
    Abstract: A micro-electromechanical system (MEMS) current and magnetic field sensor for sensing a magnetic field produced by a conductor includes a magneto-MEMS component for sensing the magnetic field and an interference-MEMS component for sensing an interference, wherein the magneto-MEMS component and the interference MEMS component are used to provide an indication of the current in the conductor.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: April 27, 2010
    Assignee: General Electric Company
    Inventors: Ertugrul Berkcan, Shankar Chandrasekaran
  • Patent number: 7692785
    Abstract: A system and method for managing optical power for controlling thermal alteration of a sample undergoing spectroscopic analysis is provided. The system includes a moveable laser beam generator for irradiating the sample and a beam shaping device for moving and shaping the laser beam to prevent thermal overload or build up in the sample. The moveable laser beam generator includes at least one beam shaping device selected from the group consisting of at least one optical lens, at least one optical diffractor, at least one optical path difference modulator, at least one moveable mirror, at least one Micro-Electro-Mechanical Systems (MEMS) integrated circuit (IC), and/or a liquid droplet. The system also includes an at least two degree of freedom (2 DOF) moveable substrate platform and a controller for controlling the laser beam generator and the substrate platform, and for analyzing light reflected from the sample.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 6, 2010
    Assignee: General Electric Company
    Inventors: Willam Scott Sutherland, Anis Zribi, Long Que, Glenn Scott Claydon, Stacey Joy Kennerly, Ayan Banerjee, Shivappa Ningappa Goravar, Shankar Chandrasekaran, David Cecil Hays, Victor Samper, Dirk Lange, Marko Baller, Min-Yi Shih, Sandip Maity
  • Patent number: 7586603
    Abstract: A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: September 8, 2009
    Assignee: General Electric Company
    Inventors: Sandip Maity, Ayan Banerjee, Anis Zribi, Stacey Kennerly, Long Que, Glenn Claydon, Shankar Chandrasekaran, Shivappa Goravar
  • Patent number: 7586602
    Abstract: A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: September 8, 2009
    Assignee: General Electric Company
    Inventors: Sandip Maity, Ayan Banerjee, Anis Zribi, Stacey Kennerly, Long Que, Glenn Claydon, Shankar Chandrasekaran, Shivappa Goravar
  • Patent number: 7573578
    Abstract: According to one embodiment, a micro-electrical mechanical system apparatus includes first and second mirrors that define a cavity. Moreover, a photonic band-gap structure coats a surface of at least one of the first or second mirrors to improve reflectivity. Another embodiment includes a third mirror, wherein the second and third mirrors form a second cavity. The spaces between the mirrors might comprise, for example, a pair of Fabry-Perot filter cavities for a spectrometer.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: August 11, 2009
    Assignee: GE Homeland Protection, Inc.
    Inventors: Anis Zribi, Glenn S. Claydon, David C. Hays, Stacey Kennerly, Long Que, Shankar Chandrasekaran, Shivappa Goravar, Ayan Banerjee
  • Patent number: 7551287
    Abstract: According to one embodiment, a micro-electrical mechanical system apparatus includes a bi-stable actuator and at least one movable Fabry-Perot filter cavity mirror coupled to the bi-stable actuator. The bi-stable actuator may be associated with a first latched position and a second latched position and may comprise, for example, a thermal device, an electrostatic device (e.g., a parallel plate or comb drive), or a magnetic device. According to some embodiments, a relationship between a voltage applied to an actuator of a Fabry-Perot filter and an amount of displacement associated with a movable mirror is substantially linear.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: June 23, 2009
    Assignee: GE Homeland Protection, Inc.
    Inventors: Anis Zribi, Glenn S. Claydon, David C. Hays, Stacey Kennerly, Long Que, Shankar Chandrasekaran, Shivappa Goravar, Ayan Banerjec
  • Patent number: 7508189
    Abstract: A micro-electromechanical system current and magnetic field sensor is presented. The micro-electromechanical system current and magnetic field sensor is configured to sense a magnetic field produced by a current carrying conductor. The sensor includes a structural component comprising a substrate and a compliant layer, a magnetic-to-mechanical converter coupled to the structural component to provide a mechanical indication of the magnetic field. The sensor further includes a strain responsive component coupled to the structural component to sense the mechanical indication and to provide an indication of the current in the current carrying conductor in response thereto.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: March 24, 2009
    Assignee: General Electric Company
    Inventors: Ertugrul Berkcan, Shankar Chandrasekaran, Christopher James Kapusta, Laura Jean Meyer, Glenn Scott Claydon, Debbie Gahaton Jones, Anis Zribi
  • Patent number: 7505128
    Abstract: An integrated spectrometer instrument, including an optical source formed on a chip, the optical source configured to generate an incident optical beam upon a sample to be measured. Collection optics formed on the chip are configured to receive a scattered optical beam from the sample, and filtering optics formed on the chip are configured to remove elastically scattered light from the scattered optical beam at a wavelength corresponding to the optical source. A tunable filter formed on the chip is configured to pass selected wavelengths of the scattered optical beam, and a photo detector device formed on the chip is configured to generate an output signal corresponding to the intensity of photons passed through the tunable filter.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: March 17, 2009
    Assignee: General Electric Company
    Inventors: Anis Zribi, Stacey Joy Kennerly, Glenn Scott Claydon, Long Que, Ayan Banerjee, Shankar Chandrasekaran, Shivappa Ningappa Goravar, David Cecil Hays
  • Publication number: 20090033314
    Abstract: A micro-electromechanical system (MEMS) current and magnetic field sensor for sensing a magnetic field produced by a conductor includes a magneto-MEMS component for sensing the magnetic field and an interference-MEMS component for sensing an interference, wherein the magneto-MEMS component and the interference MEMS component are used to provide an indication of the current in the conductor.
    Type: Application
    Filed: October 15, 2008
    Publication date: February 5, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ertugrul Berkcan, Shankar Chandrasekaran
  • Patent number: 7453256
    Abstract: A micro-electromechanical system (MEMS) current and magnetic field sensor for sensing a magnetic field produced by a conductor includes a magneto-MEMS component for sensing the magnetic field and an interference-MEMS component for sensing an interference, wherein the magneto-MEMS component and the interference MEMS component are used to provide an indication of the current in the conductor.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: November 18, 2008
    Assignee: General Electric Company
    Inventors: Ertu{hacek over (g)}rul Berkcan, Shankar Chandrasekaran
  • Publication number: 20080239306
    Abstract: A system and method for managing optical power for controlling thermal alteration of a sample undergoing spectroscopic analysis is provided. The system includes a moveable laser beam generator for irradiating the sample and a beam shaping device for moving and shaping the laser beam to prevent thermal overload or build up in the sample. The moveable laser beam generator includes at least one beam shaping device selected from the group consisting of at least one optical lens, at least one optical diffractor, at least one optical path difference modulator, at least one moveable mirror, at least one Micro-Electro-Mechanical Systems (MEMS) integrated circuit (IC), and/or a liquid droplet. The system also includes an at least two degree of freedom (2 DOF) moveable substrate platform and a controller for controlling the laser beam generator and the substrate platform, and for analyzing light reflected from the sample.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William Scott Sutherland, Anis Zribi, Long Que, Glenn Scott Claydon, Stacey Joy Kennerly, Ayan Banerjee, Shivappa Ningappa Goravar, Shankar Chandrasekaran, David Cecil Hays, Victor Samper, Dirk Lange, Marko Baller, Min-Yi Shih, Sandip Maity
  • Publication number: 20080204743
    Abstract: A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
    Type: Application
    Filed: April 17, 2008
    Publication date: August 28, 2008
    Applicant: General Electric Company
    Inventors: Sandip Maity, Ayan Banerjee, Anis Zribi, Stacey Kennerly, Long Que, Glenn Claydon, Shankar Chandrasekaran, Shivappa Goravar