Patents by Inventor Shankar Swaminathan

Shankar Swaminathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12293911
    Abstract: A method for forming a layer comprising SiOCN on a substrate is disclosed. An exemplary method includes thermally depositing the layer comprising SiOCN on a surface of the substrate. The layer comprising SiOCN can be used for various applications, including spacers, etch stop layers, and etch resistant layers.
    Type: Grant
    Filed: July 24, 2023
    Date of Patent: May 6, 2025
    Assignee: ASM IP Holding B.V.
    Inventors: YoungChol Byun, Bed Prasad Sharma, Shankar Swaminathan, Eric James Shero
  • Publication number: 20250101581
    Abstract: An apparatus and method for cleaning or etching a molybdenum film or a molybdenum nitride film from an interior of a reaction chamber in a reaction system are disclosed. A remote plasma unit is utilized to activate a halide precursor mixed with an inert gas source to form a radical gas. The radical gas reacts with the molybdenum film or the molybdenum nitride film to form a by-product that is removed from the interior of the reaction chamber by a purge gas.
    Type: Application
    Filed: December 9, 2024
    Publication date: March 27, 2025
    Inventors: Amit Mishra, Bhushan Zope, Shankar Swaminathan, Theodorus G.M. Oosterlaken
  • Patent number: 12261038
    Abstract: Provided herein are methods and apparatus for filling one or more gaps on a semiconductor substrate. The disclosed embodiments are especially useful for forming seam-free, void-free fill in both narrow and wide features. The methods may be performed without any intervening etching operations to achieve a single step deposition. In various implementations, a first operation is performed using a novel PEALD fill mechanism to fill narrow gaps and line wide gaps. A second operation may be performed using PECVD methods to continue filling the wide gaps.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: March 25, 2025
    Assignee: Lam Research Corporation
    Inventors: Hu Kang, Shankar Swaminathan, Jun Qian, Wanki Kim, Dennis M. Hausmann, Bart J. van Schravendijk, Adrien LaVoie
  • Publication number: 20250092513
    Abstract: Methods for depositing a molybdenum nitride film on a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; and depositing a molybdenum nitride film directly on the surface of the substrate by performing one or more unit deposition cycles of cyclical deposition process, wherein a unit deposition cycle may include, contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor, and contacting the substrate with a second vapor phase reactant comprising a nitrogen precursor. Semiconductor device structures including a molybdenum nitride film are also disclosed.
    Type: Application
    Filed: December 5, 2024
    Publication date: March 20, 2025
    Inventors: Eric Christopher Stevens, Bhushan Zope, Shankar Swaminathan, Charles Dezelah, Qi Xie, Giuseppe Alessio Verni
  • Patent number: 12215416
    Abstract: Methods for depositing a molybdenum nitride film on a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; and depositing a molybdenum nitride film directly on the surface of the substrate by performing one or more unit deposition cycles of cyclical deposition process, wherein a unit deposition cycle may include, contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor, and contacting the substrate with a second vapor phase reactant comprising a nitrogen precursor. Semiconductor device structures including a molybdenum nitride film are also disclosed.
    Type: Grant
    Filed: November 8, 2023
    Date of Patent: February 4, 2025
    Assignee: ASM IP Holding B.V.
    Inventors: Eric Christopher Stevens, Bhushan Zope, Shankar Swaminathan, Charles Dezelah, Qi Xie, Giuseppe Alessio Verni
  • Publication number: 20250029834
    Abstract: Methods for depositing a molybdenum metal film directly on a dielectric material surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; and depositing a molybdenum metal film directly on the dielectric surface, wherein depositing comprises: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed directly on a surface of a dielectric material deposited by the methods of the disclosure are also disclosed.
    Type: Application
    Filed: October 8, 2024
    Publication date: January 23, 2025
    Inventors: Bhushan Zope, Shankar Swaminathan, Kiran Shrestha, Chiyu Zhu, Henri Jussila, Qi Xie
  • Patent number: 12203166
    Abstract: An apparatus and method for cleaning or etching a molybdenum film or a molybdenum nitride film from an interior of a reaction chamber in a reaction system are disclosed. A remote plasma unit is utilized to activate a halide precursor mixed with an inert gas source to form a radical gas. The radical gas reacts with the molybdenum film or the molybdenum nitride film to form a by-product that is removed from the interior of the reaction chamber by a purge gas.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: January 21, 2025
    Assignee: ASM IP Holding B.V.
    Inventors: Amit Mishra, Bhushan Zope, Shankar Swaminathan, Theodorus G. M. Oosterlaken
  • Patent number: 12033885
    Abstract: A reactor system may comprise a reaction chamber enclosed by a chamber sidewall, and a susceptor disposed in the reaction chamber between a reaction space and a lower chamber space comprised in the reaction chamber. The susceptor may comprise a pin hole disposed through the susceptor such that the pin hole is in fluid communication with the reaction space and the lower chamber space, and such that the reaction space is in fluid communication with the lower chamber space. A lift pin may be disposed in the pin hole. The lift pin may comprise a pin body comprising a pin channel, defined by a pin channel surface, disposed in the pin body such that the reaction space is in fluid communication with the lower chamber space when the lift pin is disposed in the pin hole.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: July 9, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Govindarajasekhar Singu, Dinkar Nandwana, Todd Robert Dunn, Shankar Swaminathan, Bhushan Zope, Carl Louis White
  • Publication number: 20240218515
    Abstract: Methods and apparatus for use of a fill on demand ampoule are disclosed. The fill on demand ampoule may refill an ampoule with precursor concurrent with the performance of other deposition processes. The fill on demand may keep the level of precursor within the ampoule at a relatively constant level. The level may be calculated to result in an optimum head volume. The fill on demand may also keep the precursor at a temperature near that of an optimum precursor temperature. The fill on demand may occur during parts of the deposition process where the agitation of the precursor due to the filling of the ampoule with the precursor minimally effects the substrate deposition. Substrate throughput may be increased through the use of fill on demand.
    Type: Application
    Filed: March 12, 2024
    Publication date: July 4, 2024
    Inventors: Tuan Nguyen, Eashwar Ranganathan, Shankar Swaminathan, Adrien LaVoie, Chloe Baldasseroni, Ramesh Chandrasekharan, Frank Loren Pasquale, Jennifer Leigh Petraglia
  • Publication number: 20240200189
    Abstract: A semiconductor processing device is disclosed. The device can include a reactor and a solid source vessel configured to supply a vaporized solid reactant to the reactor. A process control chamber can be disposed between the solid source vessel and the reactor. The device can include a valve upstream of the process control chamber. A control system can be configured to control operation of the valve based at least in part on feedback of measured pressure in the process control chamber.
    Type: Application
    Filed: February 26, 2024
    Publication date: June 20, 2024
    Inventors: Jereld Lee Winkler, Eric James Shero, Carl Louis White, Shankar Swaminathan, Bhushan Zope
  • Publication number: 20240153817
    Abstract: Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; depositing a nucleation film directly on the dielectric surface; and depositing a molybdenum metal film directly on the nucleation film, wherein depositing the molybdenum metal film includes: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed over a surface of a dielectric material with an intermediate nucleation film are also disclosed.
    Type: Application
    Filed: January 18, 2024
    Publication date: May 9, 2024
    Inventors: Bhushan Zope, Kiran Shrestha, Shankar Swaminathan, Chiyu Zhu, Henri Jussila, Qi Xie
  • Patent number: 11959175
    Abstract: Methods and apparatus for use of a fill on demand ampoule are disclosed. The fill on demand ampoule may refill an ampoule with precursor concurrent with the performance of other deposition processes. The fill on demand may keep the level of precursor within the ampoule at a relatively constant level. The level may be calculated to result in an optimum head volume. The fill on demand may also keep the precursor at a temperature near that of an optimum precursor temperature. The fill on demand may occur during parts of the deposition process where the agitation of the precursor due to the filling of the ampoule with the precursor minimally effects the substrate deposition. Substrate throughput may be increased through the use of fill on demand.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: April 16, 2024
    Assignee: Lam Research Corporation
    Inventors: Tuan Nguyen, Eashwar Ranganathan, Shankar Swaminathan, Adrien LaVoie, Chloe Baldasseroni, Ramesh Chandrasekharan, Frank Loren Pasquale, Jennifer Leigh Petraglia
  • Patent number: 11946136
    Abstract: A semiconductor processing device is disclosed. The device can include a reactor and a solid source vessel configured to supply a vaporized solid reactant to the reactor. A process control chamber can be disposed between the solid source vessel and the reactor. The device can include a valve upstream of the process control chamber. A control system can be configured to control operation of the valve based at least in part on feedback of measured pressure in the process control chamber.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: April 2, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Jereld Lee Winkler, Eric James Shero, Carl Louis White, Shankar Swaminathan, Bhushan Zope
  • Publication number: 20240068092
    Abstract: Methods for depositing a molybdenum nitride film on a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; and depositing a molybdenum nitride film directly on the surface of the substrate by performing one or more unit deposition cycles of cyclical deposition process, wherein a unit deposition cycle may include, contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor, and contacting the substrate with a second vapor phase reactant comprising a nitrogen precursor. Semiconductor device structures including a molybdenum nitride film are also disclosed.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Eric Christopher Stevens, Bhushan Zope, Shankar Swaminathan, Charles Dezelah, Qi Xie, Giuseppe Alessio Verni
  • Patent number: 11908736
    Abstract: Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; depositing a nucleation film directly on the dielectric surface; and depositing a molybdenum metal film directly on the nucleation film, wherein depositing the molybdenum metal film includes: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed over a surface of a dielectric material with an intermediate nucleation film are also disclosed.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: February 20, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Bhushan Zope, Kiran Shrestha, Shankar Swaminathan, Chiyu Zhu, Henri Jussila, Qi Xie
  • Patent number: 11901175
    Abstract: A method for selectively depositing silicon nitride on a first material relative to a second material is disclosed. An exemplary method includes treating the first material, and then selectively depositing a layer comprising silicon nitride on the second material relative to the first material. Exemplary methods can further include treating the deposited silicon nitride.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: February 13, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Eric James Shero, Paul Ma, Bed Prasad Sharma, Shankar Swaminathan
  • Patent number: 11898242
    Abstract: Methods for forming a polycrystalline molybdenum film over a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; depositing a nucleation film directly on an exposed surface of the substrate, wherein the nucleation film comprises one of a metal oxide nucleation film or a metal nitride nucleation film; and depositing a polycrystalline molybdenum film directly on the nucleation film; wherein the polycrystalline molybdenum film comprises a plurality of molybdenum crystallites having an average crystallite size of less than 80 ?. Structures including a polycrystalline molybdenum film disposed over a surface of a substrate with an intermediate nucleation film are also disclosed.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: February 13, 2024
    Inventors: Bhushan Zope, Eric Christopher Stevens, Shankar Swaminathan, Roghayyeh Lotfi, Mustafa Muhammad, Eric Shero
  • Patent number: 11827978
    Abstract: Methods for depositing a molybdenum nitride film on a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; and depositing a molybdenum nitride film directly on the surface of the substrate by performing one or more unit deposition cycles of cyclical deposition process, wherein a unit deposition cycle may include, contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor, and contacting the substrate with a second vapor phase reactant comprising a nitrogen precursor. Semiconductor device structures including a molybdenum nitride film are also disclosed.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: November 28, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Eric Christopher Stevens, Bhushan Zope, Shankar Swaminathan, Charles Dezelah, Qi Xie, Giuseppe Alessio Verni
  • Publication number: 20230369040
    Abstract: A method for forming a layer comprising SiOCN on a substrate is disclosed. An exemplary method includes thermally depositing the layer comprising SiOCN on a surface of the substrate. The layer comprising SiOCN can be used for various applications, including spacers, etch stop layers, and etch resistant layers.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: YoungChol Byun, Bed Prasad Sharma, Shankar Swaminathan, Eric James Shero
  • Patent number: 11742198
    Abstract: A method for forming a layer comprising SiOCN on a substrate is disclosed. An exemplary method includes thermally depositing the layer comprising SiOCN on a surface of the substrate. The layer comprising SiOCN can be used for various applications, including spacers, etch stop layers, and etch resistant layers.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: August 29, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: YoungChol Byun, Bed Prasad Sharma, Shankar Swaminathan, Eric James Shero