Patents by Inventor Shao-Ming Yu

Shao-Ming Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180337034
    Abstract: A semiconductor device includes a substrate, a first dielectric layer, a first semiconductor layer, a second dielectric layer and a second semiconductor layer. The first dielectric layer is disposed on the substrate and includes at least one first trench formed in the first dielectric layer. The first semiconductor layer is disposed on the first dielectric layer and within the at least one first trench. The second dielectric layer is disposed on the first semiconductor layer and includes at least one second trench formed in the second dielectric layer, wherein in a planar view, the at least one first trench and the at least one second trench are not overlapped with each other. The second semiconductor layer is disposed on the second dielectric layer and within the at least one second trench.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 22, 2018
    Inventors: Tung-Ying LEE, Shao-Ming YU
  • Publication number: 20180323065
    Abstract: A semiconductor device includes a substrate, a first semiconductor stack including elongated semiconductor features isolated from each other and overlaid in a direction perpendicular to a top surface of the substrate, and a second semiconductor stack including elongated semiconductor features isolated from each other and overlaid in the direction perpendicular to the top surface of the substrate. The second semiconductor stack has different geometric characteristics than the first semiconductor stack. A top surface of the first semiconductor stack is coplanar with a top surface of the second semiconductor stack.
    Type: Application
    Filed: July 12, 2018
    Publication date: November 8, 2018
    Inventors: Tung Ying Lee, Shao-Ming Yu
  • Publication number: 20180277658
    Abstract: A method for manufacturing a semiconductor device is provided by follows. A fin is formed over a substrate. A spacer is formed on a sidewall of a first portion of the fin. An epitaxy feature is grown from a second portion of the fin that is in a position lower than the first portion of the fin, in which the forming the epitaxy feature is performed after the forming the spacer. The spacer is removed to expose the first portion of the fin. A gate stack is formed around the exposed first portion of the fin.
    Type: Application
    Filed: June 23, 2017
    Publication date: September 27, 2018
    Inventors: Wei-Sheng YUN, Shao-Ming YU, Tung-Ying LEE, Chih-Chieh YEH
  • Patent number: 10032627
    Abstract: A method includes forming a first semiconductor stack using an epitaxial growth process, the first semiconductor stack comprising a first plurality of semiconductor layers alternating with a second plurality of semiconductor layers, the first plurality of semiconductor layers comprising a first semiconductor material and the second plurality of semiconductor layers comprising a second semiconductor material that is different than the first semiconductor material. The method further includes patterning the first semiconductor stack to form a set of semiconductor stack features, forming isolation features between the semiconductor stack features, removing at least one of the semiconductor stack features, thereby forming at least one trench, and forming, within the trench, a second semiconductor stack using an epitaxial growth process, the second semiconductor stack having different characteristics than the first semiconductor stack.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tung Ying Lee, Shao-Ming Yu
  • Patent number: 9917192
    Abstract: A method includes forming an isolation feature in a semiconductor substrate; forming a first fin-like active region and a second fin-like active region in the semiconductor substrate and interposed by the isolation feature; forming a dummy gate stack on the isolation feature, wherein the dummy gate extends to the first fin-like active region from one side and to the second fin-like active region from another side.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: March 13, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Publication number: 20170271503
    Abstract: A semiconductor structure includes an isolation feature formed in the semiconductor substrate and a first fin-type active region. The first fin-type active region extends in a first direction. A dummy gate stack is disposed on an end region of the first fin-type active region. The dummy gate stack may overlie an isolation structure. In an embodiment, any recess such as formed for a source/drain region in the first fin-type active region will be displaced from the isolation region by the distance the dummy gate stack overlaps the first fin-type active region.
    Type: Application
    Filed: June 5, 2017
    Publication date: September 21, 2017
    Inventors: Shao-Ming YU, Chang-Yun CHANG, Chih-Hao CHANG, Hsin-Chih CHEN, Kai-Tai CHANG, Ming-Feng SHIEH, Kuei-Liang LU, Yi-Tang LIN
  • Patent number: 9673328
    Abstract: A semiconductor structure includes an isolation feature formed in the semiconductor substrate and a first fin-type active region. The first fin-type active region extends in a first direction. A dummy gate stack is disposed on an end region of the first fin-type active region. The dummy gate stack may overlie an isolation structure. In an embodiment, any recess such as formed for a source/drain region in the first fin-type active region will be displaced from the isolation region by the distance the dummy gate stack overlaps the first fin-type active region.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: June 6, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Publication number: 20170140933
    Abstract: A method includes forming a first semiconductor stack using an epitaxial growth process, the first semiconductor stack comprising a first plurality of semiconductor layers alternating with a second plurality of semiconductor layers, the first plurality of semiconductor layers comprising a first semiconductor material and the second plurality of semiconductor layers comprising a second semiconductor material that is different than the first semiconductor material. The method further includes patterning the first semiconductor stack to form a set of semiconductor stack features, forming isolation features between the semiconductor stack features, removing at least one of the semiconductor stack features, thereby forming at least one trench, and forming, within the trench, a second semiconductor stack using an epitaxial growth process, the second semiconductor stack having different characteristics than the first semiconductor stack.
    Type: Application
    Filed: November 16, 2015
    Publication date: May 18, 2017
    Inventors: Tung Ying Lee, Shao-Ming Yu
  • Publication number: 20160343710
    Abstract: A semiconductor device includes a first fin structure extending from a semiconductor substrate. A second fin structure is disposed over the first fin structure. The second fin structure includes a first layer including a first semiconductor material. The second fin structure further includes a second layer including a second semiconductor material disposed over the first layer. The second layer has a vertical sidewall. The second semiconductor material is different from the first semiconductor material. A gate structure is disposed over the semiconductor substrate and wraps around the first and second layers of the second fin structure.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 24, 2016
    Inventors: Chih-Hao YU, Shao-Ming YU
  • Publication number: 20160240675
    Abstract: A method includes forming an isolation feature in a semiconductor substrate; forming a first fin-like active region and a second fin-like active region in the semiconductor substrate and interposed by the isolation feature; forming a dummy gate stack on the isolation feature, wherein the dummy gate extends to the first fin-like active region from one side and to the second fin-like active region from another side.
    Type: Application
    Filed: April 25, 2016
    Publication date: August 18, 2016
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Patent number: 9406782
    Abstract: A method for fabricating a fin-type field-effect transistor (FinFET) device includes forming a first fin structure over a substrate, forming a dielectric layer over the first fin structures, forming a trench with a vertical profile in the dielectric layer, depositing conformably a first semiconductor material layer over sidewalls and bottom of the trench, depositing a second semiconductor material layer over the first semiconductor material layer to filling in the remaining trench, recessing the dielectric layer to laterally expose the first semiconductor material layer and etching the exposed first semiconductor material layer to reveal the second semiconductor material layer.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: August 2, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Yu, Shao-Ming Yu
  • Patent number: 9368446
    Abstract: The present disclosure relates to methods of forming a self-aligned contact and related apparatus. In some embodiments, the method forms a plurality of gate lines interspersed between a plurality of dielectric lines, wherein the gate lines and the dielectric lines extend in a first direction over an active area. One or more of the plurality of gate lines are into a plurality of gate line sections aligned in the first direction. One or more of the plurality of dielectric lines are cut into a plurality of dielectric lines sections aligned in the first direction. A dummy isolation material is deposited between adjacent dielectric sections in the first direction and between adjacent gate line sections in the first direction. One or more self-aligned metal contacts are then formed by replacing a part of one or more of the plurality of dielectric lines over the active area with a contact metal.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: June 14, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Neng-Kuo Chen, Shao-Ming Yu, Gin-chen Huang, Chia-Jung Hsu, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20160163851
    Abstract: A semiconductor structure includes an isolation feature formed in the semiconductor substrate and a first fin-type active region. The first fin-type active region extends in a first direction. A dummy gate stack is disposed on an end region of the first fin-type active region. The dummy gate stack may overlie an isolation structure. In an embodiment, any recess such as formed for a source/drain region in the first fin-type active region will be displaced from the isolation region by the distance the dummy gate stack overlaps the first fin-type active region.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 9, 2016
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Patent number: 9324866
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate; an isolation feature formed in the semiconductor substrate; a first active region and a second active region formed in the semiconductor substrate, wherein the first and second active regions extend in a first direction and are separated from each other by the isolation feature; and a dummy gate disposed on the isolation feature, wherein the dummy gate extends in the first direction to the first active region from one side and to the second active region from another side.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: April 26, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Patent number: 9245080
    Abstract: A method for designing a semiconductor ic chip includes dividing the chip into functional blocks such as a core portion and one or more other functional cells and applying design rules concerning the spatial arrangement of semiconductor fins to the core portion but not to the other functional cells. The design guidelines include the application of design rules to some but not all functional blocks of the chip, may be stored on a computer-readable medium and the design of the semiconductor ic chip and the generation of a photomask set for manufacturing the semiconductor ic chip may be carried out using a CAD or other automated design system. The semiconductor ic chip formed in accordance with this method includes semiconductor fins that are formed in both the core portion and the other functional cells but are only required to be tightly packed in the core portion.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: January 26, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Ming Yu, Chang-Yun Chang
  • Publication number: 20150380525
    Abstract: A method for fabricating a fin-type field-effect transistor (FinFET) device includes forming a first fin structure over a substrate, forming a dielectric layer over the first fin structures, forming a trench with a vertical profile in the dielectric layer, depositing conformably a first semiconductor material layer over sidewalls and bottom of the trench, depositing a second semiconductor material layer over the first semiconductor material layer to filling in the remaining trench, recessing the dielectric layer to laterally expose the first semiconductor material layer and etching the exposed first semiconductor material layer to reveal the second semiconductor material layer.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Inventors: Chih-Hao Yu, Shao-Ming Yu
  • Publication number: 20150115373
    Abstract: A semiconductor structure includes an isolation feature formed in the semiconductor substrate and a first fin-type active region. The first fin-type active region extends in a first direction. A dummy gate stack is disposed on an end region of the first fin-type active region. The dummy gate stack may overlie an isolation structure. In an embodiment, any recess such as formed for a source/drain region in the first fin-type active region will be displaced from the isolation region by the distance the dummy gate stack overlaps the first fin-type active region.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 30, 2015
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Publication number: 20150108651
    Abstract: The present disclosure relates to methods of forming a self-aligned contact and related apparatus. In some embodiments, the method forms a plurality of gate lines interspersed between a plurality of dielectric lines, wherein the gate lines and the dielectric lines extend in a first direction over an active area. One or more of the plurality of gate lines are into a plurality of gate line sections aligned in the first direction. One or more of the plurality of dielectric lines are cut into a plurality of dielectric lines sections aligned in the first direction. A dummy isolation material is deposited between adjacent dielectric sections in the first direction and between adjacent gate line sections in the first direction. One or more self-aligned metal contacts are then formed by replacing a part of one or more of the plurality of dielectric lines over the active area with a contact metal.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 23, 2015
    Inventors: Neng-Kuo Chen, Shao-Ming Yu, Gin-Chen Huang, Chia-Jung Hsu, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 8921136
    Abstract: The present disclosure relates to methods of forming a self-aligned contact and related apparatus. In some embodiments, the method forms a plurality of gate lines interspersed between a plurality of dielectric lines, wherein the gate lines and the dielectric lines extend in a first direction over an active area. One or more of the plurality of gate lines are into a plurality of gate line sections aligned in the first direction. One or more of the plurality of dielectric lines are cut into a plurality of dielectric lines sections aligned in the first direction. A dummy isolation material is deposited between adjacent dielectric sections in the first direction and between adjacent gate line sections in the first direction. One or more self-aligned metal contacts are then formed by replacing a part of one or more of the plurality of dielectric lines over the active area with a contact metal.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Neng-Kuo Chen, Shao-Ming Yu, Gin-Chen Huang, Chia-Jung Hsu, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20140331192
    Abstract: A method for designing a semiconductor ic chip includes dividing the chip into functional blocks such as a core portion and one or more other functional cells and applying design rules concerning the spatial arrangement of semiconductor fins to the core portion but not to the other functional cells. The design guidelines include the application of design rules to some but not all functional blocks of the chip, may be stored on a computer-readable medium and the design of the semiconductor ic chip and the generation of a photomask set for manufacturing the semiconductor ic chip may be carried out using a CAD or other automated design system. The semiconductor ic chip formed in accordance with this method includes semiconductor fins that are formed in both the core portion and the other functional cells but are only required to be tightly packed in the core portion.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 6, 2014
    Inventors: Shao-Ming YU, Chang-Yun CHANG