Patents by Inventor Shaochen Chen

Shaochen Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150265152
    Abstract: A catheter imaging probe for a patient. The probe includes a conduit through with energy is transmitted. The probe includes a first portion through which the conduit extends. The probe includes a second portion which rotates relative to the conduit to redirect the energy from the conduit. A method for imaging a patient. The method includes the steps of inserting a catheter into the patient. There is the step of rotating a second portion of the catheter relative to a conduit extending through a first portion of the catheter, which redirects the energy transmitted through the conduit to the patient and receives the energy reflected back to the second portion from the patient and redirects the reflected energy to the conduit.
    Type: Application
    Filed: March 30, 2015
    Publication date: September 24, 2015
    Inventors: Marc D. Feldman, Thomas E. MILNER, Shaochen CHEN, Jihoon KIM, Li-Hsin HAN, Jung Hwan OH, Ho LEE
  • Publication number: 20150230709
    Abstract: The present invention relates to a rotating catheter tip for optical coherence tomography based on the use of an optical fiber that does not rotate, that is enclosed in a catheter, which has a tip rotates under the influence of a fluid drive system to redirect light from the fiber to a surrounding vessel and the light reflected or backscattered from the vessel back to the optical fiber.
    Type: Application
    Filed: February 9, 2015
    Publication date: August 20, 2015
    Inventors: Thomas E. Milner, Marc D. Feldman, Jung-Hwan Oh, Shaochen Chen, Paul Castella
  • Patent number: 8996099
    Abstract: A catheter imaging probe for a patient. The probe includes a conduit through with energy is transmitted. The probe includes a first portion through which the conduit extends. The probe includes a second portion which rotates relative to the conduit to redirect the energy from the conduit. A method for imaging a patient. The method includes the steps of inserting a catheter into the patient. There is the step of rotating a second portion of the catheter relative to a conduit extending through a first portion of the catheter, which redirects the energy transmitted through the conduit to the patient and receives the energy reflected back to the second portion from the patient and redirects the reflected energy to the conduit.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: March 31, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, Thomas E. Milner, Shaochen Chen, Jihoon Kim, Li-Hsin Han, Jung-hwan Oh, Lee Ho
  • Patent number: 8989849
    Abstract: The present invention relates to a rotating catheter tip for optical coherence tomography based on the use of an optical fiber that does not rotate, that is enclosed in a catheter, which has a tip rotates under the influence of a fluid drive system to redirect light from the fiber to a surrounding vessel and the light reflected or backscattered from the vessel back to the optical fiber.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: March 24, 2015
    Assignee: Board of Regents, the University of Texas System
    Inventors: Thomas E. Milner, Marc D. Feldman, Jung-Hwan Oh, Shaochen Chen, Paul Castella
  • Publication number: 20130344601
    Abstract: Techniques, systems, apparatus and material are disclosed for fabricating a micro-structured biomaterial. In one aspect, a micro-structured biomaterial includes a three-dimensional solid-phase micro-cellular biomaterial that exhibits a negative Poisson ratio that is tunable in magnitude.
    Type: Application
    Filed: November 22, 2011
    Publication date: December 26, 2013
    Applicant: The Regents of the University of California
    Inventors: Pranav Soman, Shaochen Chen, David Fozdar
  • Publication number: 20130338495
    Abstract: The embodiments disclosed herein is related to a system for optical coherence tomographic imaging of turbid (i.e., scattering) materials utilizing multiple channels of information. The multiple channels of information may be comprised and encompass spatial, angle, spectral and polarization domains. More specifically, the embodiments disclosed herein is related to methods and apparatus for utilizing optical sources, systems or receivers capable of providing (source), processing (system) or recording (receiver) a multiplicity of channels of spectral information for optical coherence tomographic imaging of turbid materials. In these methods and apparatus the multiplicity of channels of spectral information that can be provided by the source, processed by the system, or recorded by the receiver are used to convey simultaneously spatial, spectral or polarimetric information relating to the turbid material being imaged tomographically.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 19, 2013
    Applicant: Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, Thomas E. Milner, Jung-Hwan Oh, Eunha Kim, Karathik Kumar, Jonathan C. Condit, Robert Grant, Nathaniel J. Kemp, Jihoon Kim, Shaochen Chen, Li-Hsin Han
  • Patent number: 8540627
    Abstract: The embodiments disclosed herein is related to a system for optical coherence tomographic imaging of turbid (i.e., scattering) materials utilizing multiple channels of information. The multiple channels of information may be comprised and encompass spatial, angle, spectral and polarization domains. More specifically, the embodiments disclosed herein is related to methods and apparatus for utilizing optical sources, systems or receivers capable of providing (source), processing (system) or recording (receiver) a multiplicity of channels of spectral information for optical coherence tomographic imaging of turbid materials. In these methods and apparatus the multiplicity of channels of spectral information that can be provided by the source, processed by the system, or recorded by the receiver are used to convey simultaneously spatial, spectral or polarimetric information relating to the turbid material being imaged tomographically.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: September 24, 2013
    Assignee: Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, Thomas E. Milner, Jung Hwan Oh, Eunha Kim, Karthik Kumar, Chris Condit, Robert Grant, Nate Kemp, Jeehyun Kim, Shaochen Chen, Li-Hsin Han
  • Publication number: 20110275947
    Abstract: Aspects according to the present invention provide a method and implant suitable for implantation inside a human body that includes a power consuming means responsive to a physiological requirement of the human body, a power source and a power storage device. The power source comprises a piezoelectric assembly that is configured to generate an electrical current when flexed by the tissue of the body and communicate the generated current to the power storage device, which is electrically coupled to the power source and to the power consuming means.
    Type: Application
    Filed: March 7, 2011
    Publication date: November 10, 2011
    Applicant: Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, Shaochen Chen, Li-Hsin Han, Carlos A. Aguilar, Arturo A. Ayon, C. Mauli A Grawal, David M. Lighthart, Devang N. Patel, Steven R. Bailey, Brian A. Korgel, Doh C. Lee, Tushar Sharma, Christopher J. Ellison, Xiaojing Zhang
  • Publication number: 20110152771
    Abstract: The present invention relates to a rotating catheter tip for optical coherence tomography based on the use of an optical fiber that does not rotate, that is enclosed in a catheter, which has a tip rotates under the influence of a fluid drive system to redirect light from the fiber to a surrounding vessel and the light reflected or backscattered from the vessel back to the optical fiber.
    Type: Application
    Filed: October 25, 2010
    Publication date: June 23, 2011
    Applicants: Board of Regents, The University of Texas Systsem, Volcano Corporation
    Inventors: Thomas E. Milner, Marc D. Feldman, Jung-Hwan Oh, Shaochen Chen, Paul Castella
  • Publication number: 20110009701
    Abstract: The embodiments disclosed herein is related to a system for optical coherence tomographic imaging of turbid (i.e., scattering) materials utilizing multiple channels of information. The multiple channels of information may be comprised and encompass spatial, angle, spectral and polarization domains. More specifically, the embodiments disclosed herein is related to methods and apparatus for utilizing optical sources, systems or receivers capable of providing (source), processing (system) or recording (receiver) a multiplicity of channels of spectral information for optical coherence tomographic imaging of turbid materials. In these methods and apparatus the multiplicity of channels of spectral information that can be provided by the source, processed by the system, or recorded by the receiver are used to convey simultaneously spatial, spectral or polarimetric information relating to the turbid material being imaged tomographically.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 13, 2011
    Applicant: Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, Thomas E. Milner, Jung Hwan Oh, Eunha Kim, Karthik Kumar, Chris Condit, Robert Grant, Nate Kemp, Jeehyun Kim, Shaochen Chen, Li-Hsin Han
  • Patent number: 7853316
    Abstract: The present invention relates to a rotating catheter tip for optical coherence tomography based on the use of an optical fiber that does not rotate, that is enclosed in a catheter, which has a tip rotates under the influence of a fluid drive system to redirect light from the fiber to a surrounding vessel and the light reflected or backscattered from the vessel back to the optical fiber.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: December 14, 2010
    Assignees: Board of Regents, the University of Texas System, Volcano Corporation
    Inventors: Thomas E. Milner, Marc D. Feldman, Jung-Hwan Oh, Shaochen Chen, Paul Castella
  • Patent number: 7783337
    Abstract: An apparatus is disclosed for studying an object based on at least one of polarization, space, position or angle of light that has reflected from the object. An optical tomographic instrumentation of the apparatus includes a light source coupled to a source path, a sample path, a reference path, and a detection path, wherein the light source generates a spectrally resolved bandwidth. The spectrally resolved bandwidth includes a plurality of spectrally resolved cells and a detector in the detection path for analyzing light reflected from an object in the sample path and the light reflected in the reference path based upon at least one of the polarization, spatial relationship, position or angle domains.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: August 24, 2010
    Assignee: Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, Thomas E. Milner, Jung Hwan Oh, Eunha Kim, Karthik Kumar, Chris Condit, Robert Grant, Nate Kemp, Jeehyun Kim, Shaochen Chen, Li-Hsin Han
  • Publication number: 20100168587
    Abstract: A catheter imaging probe for a patient. The probe includes a conduit through with energy is transmitted. The probe includes a first portion through which the conduit extends. The probe includes a second portion which rotates relative to the conduit to redirect the energy from the conduit. A method for imaging a patient. The method includes the steps of inserting a catheter into the patient. There is the step of rotating a second portion of the catheter relative to a conduit extending through a first portion of the catheter, which redirects the energy transmitted through the conduit to the patient and receives the energy reflected back to the second portion from the patient and redirects the reflected energy to the conduit.
    Type: Application
    Filed: December 15, 2009
    Publication date: July 1, 2010
    Applicant: Board of Regents, the University of Texas System
    Inventors: Marc D. Feldman, Thomas E. Milner, Shaochen Chen, Jeehyun Kim, Li-Hsin Han, Jung-Hwan Oh, Ho Lee
  • Publication number: 20100160994
    Abstract: Aspects according to the present invention provide a method and implant suitable for implantation inside a human body that includes a power consuming means responsive to a physiological requirement of the human body, a power source and a power storage device. The power source comprises a sheathed piezoelectric assembly that is configured to generate an electrical current when flexed by the tissue of the body and communicate the generated current to the power storage device, which is electrically coupled to the power source and to the power consuming means.
    Type: Application
    Filed: January 4, 2008
    Publication date: June 24, 2010
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Marc D. Feldman, Shaochen Chen, Li-Hsin Han, Carlos A. Aguilar, Arturo A. Ayon, C. Mauli Agrawal, David M. Johnson, Devang N. Patel, Steven R. Bailey, Brian A. Korgel, Doh C. Lee
  • Patent number: 7711413
    Abstract: A catheter imaging probe for a patient. The probe includes a conduit through which energy is transmitted. The probe includes a first portion through which the conduit extends. The probe includes a second portion which rotates relative to the conduit to redirect the energy from the conduit. A method for imaging a patient. The method includes the steps of inserting a catheter into the patient. There is the step of rotating a second portion of the catheter relative to a conduit extending through a first portion of the catheter, which redirects the energy transmitted through the conduit to the patient and receives the energy reflected back to the second portion from the patient and redirects the reflected energy to the conduit.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: May 4, 2010
    Assignee: Volcano Corporation
    Inventors: Marc D. Feldman, Thomas E. Milner, Shaochen Chen, Jeehyun Kim, Li-Hsin Han, Jung-Hwan Oh, Ho Lee
  • Publication number: 20070161893
    Abstract: The present invention relates to a rotating catheter tip for optical coherence tomography based on the use of an optical fiber that does not rotate, that is enclosed in a catheter, which has a tip rotates under the influence of a fluid drive system to redirect light from the fiber to a surrounding vessel and the light reflected or backscattered from the vessel back to the optical fiber.
    Type: Application
    Filed: October 20, 2006
    Publication date: July 12, 2007
    Applicants: Board of Regents, The University of Texas System, CardioSpectra, Inc.
    Inventors: Thomas Milner, Marc Feldman, Jung-Hwan Oh, Shaochen Chen, Paul Castella
  • Publication number: 20070015969
    Abstract: The present invention is related to a system for optical coherence tomographic imaging of turbid (i.e., scattering) materials utilizing multiple channels of information. The multiple channels of information may be comprised and encompass spatial, angle, spectral and polarization domains. More specifically, the present invention is related to methods and apparatus for utilizing optical sources, systems or receivers capable of providing (source), processing (system) or recording (receiver) a multiplicity of channels of spectral information for optical coherence tomographic imaging of turbid materials. In these methods and apparatus the multiplicity of channels of spectral information that can be provided by the source, processed by the system, or recorded by the receiver are used to convey simultaneously spatial, spectral or polarimetric information relating to the turbid material being imaged tomographically.
    Type: Application
    Filed: June 5, 2006
    Publication date: January 18, 2007
    Inventors: Marc Feldman, Thomas Milner, Jung Oh, Eunha Kim, Karthik Kumar, Chris Condit, Robert Grant, Nate Kemp, Jeehyun Kim, Shaochen Chen, Li-Hsin Han
  • Publication number: 20060241493
    Abstract: A catheter imaging probe for a patient. The probe includes a conduit through with energy is transmitted. The probe includes a first portion through which the conduit extends. The probe includes a second portion which rotates relative to the conduit to redirect the energy from the conduit. A method for imaging a patient. The method includes the steps of inserting a catheter into the patient. There is the step of rotating a second portion of the catheter relative to a conduit extending through a first portion of the catheter, which redirects the energy transmitted through the conduit to the patient and receives the energy reflected back to the second portion from the patient and redirects the reflected energy to the conduit.
    Type: Application
    Filed: April 23, 2004
    Publication date: October 26, 2006
    Inventors: Marc Feldman, Thomas Mihner, Shaochen Chen, Jeehyun Kim, Li-Hsin Han, Jung-Hwan Oh, Ho Lee