Patents by Inventor Shao Yu Lin

Shao Yu Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230397501
    Abstract: A method of forming a memory device including forming a bottom electrode via (BEVA) in a dielectric layer, forming a magnetic tunnel junction (MTJ) multilayer structure over the BEVA, forming a top electrode on the MTJ multilayer structure, patterning the MTJ multilayer structure using the top electrode as an etch mask to form a MTJ stack, forming a first interlayer dielectric (ILD) layer over the MTJ stack, and after forming the first ILD layer, forming a ferromagnetic metal that exerts a magnetic field on the MTJ stack.
    Type: Application
    Filed: June 2, 2022
    Publication date: December 7, 2023
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Ya-Jui TSOU, Jih-Chao CHIU, Huan-Chi SHIH, Chee-Wee LIU, Shao-Yu LIN, Chih-Lin WANG
  • Publication number: 20230360686
    Abstract: A method includes forming bottom conductive lines over a wafer. A first magnetic tunnel junction (MTJ) stack is formed over the bottom conductive lines. Middle conductive lines are formed over the first MTJ stack. A second MTJ stack is formed over the middle conductive lines. Top conductive lines are formed over the second MTJ stack.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 9, 2023
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Zong-You LUO, Ya-Jui TSOU, Chee-Wee LIU, Shao-Yu LIN, Liang-Chor CHUNG, Chih-Lin WANG
  • Publication number: 20230363287
    Abstract: A method includes forming a memory stack over a substrate. A dielectric layer is deposited to cover the memory stack. An opening is formed in the dielectric layer. The opening does not expose the memory stack. A spin-orbit-torque (SOT) layer is formed in the opening. A free layer is formed over the dielectric layer to interconnect the memory stack and the SOT layer.
    Type: Application
    Filed: July 17, 2023
    Publication date: November 9, 2023
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Ya-Jui TSOU, Zong-You LUO, Chee-Wee LIU, Shao-Yu LIN, Liang-Chor CHUNG, Chih-Lin WANG
  • Patent number: 11778923
    Abstract: A magnetoresistive memory device includes a memory stack, a spin-orbit-torque (SOT) layer, and a free layer. The memory stack includes a pinned layer, a spacer layer over the pinned layer, a reference layer over the spacer layer, and a tunnel barrier layer over the reference layer. The SOT layer has a top surface substantially coplanar with a top surface of the tunnel barrier layer of the memory stack. The free layer interconnects the SOT layer and the tunnel barrier layer.
    Type: Grant
    Filed: November 14, 2021
    Date of Patent: October 3, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Ya-Jui Tsou, Zong-You Luo, Chee-Wee Liu, Shao-Yu Lin, Liang-Chor Chung, Chih-Lin Wang
  • Patent number: 11749328
    Abstract: A method includes forming bottom conductive lines over a wafer. A first magnetic tunnel junction (MTJ) stack is formed over the bottom conductive lines. Middle conductive lines are formed over the first MTJ stack. A second MTJ stack is formed over the middle conductive lines. Top conductive lines are formed over the second MTJ stack.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: September 5, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Zong-You Luo, Ya-Jui Tsou, Chee-Wee Liu, Shao-Yu Lin, Liang-Chor Chung, Chih-Lin Wang
  • Publication number: 20230255122
    Abstract: A memory structure comprises a dielectric layer, a first ferromagnetic bottom electrode, a second ferromagnetic bottom electrode, an SOT channel layer, and an MTJ structure. The dielectric layer is over the substrate. The first ferromagnetic bottom electrode extends through the dielectric layer. The second ferromagnetic bottom electrode extends through the dielectric layer, and is spaced apart from the first ferromagnetic bottom electrode. The SOT channel layer extends from the first ferromagnetic bottom electrode to the second ferromagnetic bottom electrode. The MTJ structure is over the SOT channel layer.
    Type: Application
    Filed: February 10, 2022
    Publication date: August 10, 2023
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Wei-Jen CHEN, Ya-Jui TSOU, Chee-Wee LIU, Shao-Yu LIN, Chih-Lin WANG
  • Publication number: 20230170403
    Abstract: A memory device comprises a source region, a drain region, a channel region, a gate dielectric layer, an MTJ stack, and a metal gate. The source region and the drain region are over a substrate. The channel region is between the source region and the drain region. The gate dielectric layer is over the channel region. The MTJ stack is over the gate dielectric layer. The MTJ stack comprises a first ferromagnetic layer, a second ferromagnetic layer with a switchable magnetization, and a tunnel barrier layer between the first and second ferromagnetic layers. The metal gate is over the MTJ stack.
    Type: Application
    Filed: April 7, 2022
    Publication date: June 1, 2023
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Ya-Jui Tsou, Wei-Jen Chen, Pang-Chun Liu, Chee-Wee Liu, Shao-Yu Lin, Chih-Lin Wang
  • Publication number: 20230027792
    Abstract: A memory device includes a spin-orbit-transfer (SOT) bottom electrode, an SOT ferromagnetic free layer, a first tunnel barrier layer, a spin-transfer-torque (STT) ferromagnetic free layer, a second tunnel barrier layer and a reference layer. The SOT ferromagnetic free layer is over the SOT bottom electrode. The SOT ferromagnetic free layer has a magnetic orientation switchable by the SOT bottom electrode using a spin Hall effect or Rashba effect. The first tunnel barrier layer is over the SOT ferromagnetic free layer. The STT ferromagnetic free layer is over the first tunnel barrier layer and has a magnetic orientation switchable using an STT effect. The second tunnel barrier layer is over the STT ferromagnetic free layer. The second tunnel barrier layer has a thickness different from a thickness of the first tunnel barrier layer. The reference layer is over the second tunnel barrier layer and has a fixed magnetic orientation.
    Type: Application
    Filed: May 4, 2022
    Publication date: January 26, 2023
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Jih-Chao CHIU, Ya-Jui TSOU, Wei-Jen CHEN, Chee-Wee LIU, Shao-Yu LIN, Chih-Lin WANG
  • Publication number: 20220358980
    Abstract: A method includes forming bottom conductive lines over a wafer. A first magnetic tunnel junction (MTJ) stack is formed over the bottom conductive lines. Middle conductive lines are formed over the first MTJ stack. A second MTJ stack is formed over the middle conductive lines. Top conductive lines are formed over the second MTJ stack.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Zong-You LUO, Ya-Jui TSOU, Chee-Wee LIU, Shao-Yu LIN, Liang-Chor CHUNG, Chih-Lin WANG
  • Patent number: 11410714
    Abstract: A magnetoresistive memory device includes a plurality of bottom conductive lines, a plurality of top conductive lines, a first memory cell, and a second memory cell. The top conductive lines are over the bottom conductive lines. The first memory cell is between the bottom conductive lines and the top conductive lines and includes a first magnetic tunnel junction (MTJ) stack. The second memory cell is adjacent the first memory cell and between the bottom conductive lines and the top conductive lines. The second memory cell includes a second MTJ stack, and a top surface of the second MTJ stack is higher than a top surface of the first MTJ stack.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: August 9, 2022
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Zong-You Luo, Ya-Jui Tsou, Chee-Wee Liu, Shao-Yu Lin, Liang-Chor Chung, Chih-Lin Wang
  • Publication number: 20220077384
    Abstract: A magnetoresistive memory device includes a memory stack, a spin-orbit-torque (SOT) layer, and a free layer. The memory stack includes a pinned layer, a spacer layer over the pinned layer, a reference layer over the spacer layer, and a tunnel barrier layer over the reference layer. The SOT layer has a top surface substantially coplanar with a top surface of the tunnel barrier layer of the memory stack. The free layer interconnects the SOT layer and the tunnel barrier layer.
    Type: Application
    Filed: November 14, 2021
    Publication date: March 10, 2022
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Ya-Jui TSOU, Zong-You LUO, Chee-Wee LIU, Shao-Yu LIN, Liang-Chor CHUNG, Chih-Lin WANG
  • Patent number: 11177430
    Abstract: A magnetoresistive memory device includes a memory stack, a spin-orbit-torque (SOT) layer, and a free layer. The memory stack includes a pinned layer and a reference layer over the pinned layer. The SOT layer is spaced apart from the memory stack. The free layer is over the memory stack and the SOT layer.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: November 16, 2021
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Ya-Jui Tsou, Zong-You Luo, Chee-Wee Liu, Shao-Yu Lin, Liang-Chor Chung, Chih-Lin Wang
  • Publication number: 20210082482
    Abstract: A magnetoresistive memory device includes a plurality of bottom conductive lines, a plurality of top conductive lines, a first memory cell, and a second memory cell. The top conductive lines are over the bottom conductive lines. The first memory cell is between the bottom conductive lines and the top conductive lines and includes a first magnetic tunnel junction (MTJ) stack. The second memory cell is adjacent the first memory cell and between the bottom conductive lines and the top conductive lines. The second memory cell includes a second MTJ stack, and a top surface of the second MTJ stack is higher than a top surface of the first MTJ stack.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Zong-You LUO, Ya-Jui TSOU, Chee-Wee LIU, Shao-Yu LIN, Liang-Chor CHUNG, Chih-Lin WANG
  • Publication number: 20200395530
    Abstract: A magnetoresistive memory device includes a memory stack, a spin-orbit-torque (SOT) layer, and a free layer. The memory stack includes a pinned layer and a reference layer over the pinned layer. The SOT layer is spaced apart from the memory stack. The free layer is over the memory stack and the SOT layer.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 17, 2020
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Ya-Jui TSOU, Zong-You LUO, Chee-Wee LIU, Shao-Yu LIN, Liang-Chor CHUNG, Chih-Lin WANG
  • Patent number: D715784
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: October 21, 2014
    Inventors: Shao Yu Lin, Qiang Xiong