Patents by Inventor Shawn A. Johnson

Shawn A. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8000801
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: August 16, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Barry C. Muffoletto, Warren S. Dabney, Christine A. Frysz, Christopher Michael Williams, Holly Noelle Moschiano, Jeff Fleigle, Kishore Kumar Kondabatni, Richard L. Brendel, Robert Shawn Johnson, Scott Brainard, Henry R. Halperin, Albert C. Lardo
  • Patent number: 7966075
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: June 21, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo
  • Patent number: 7957806
    Abstract: A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: June 7, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Richard L. Brendel, Christine A. Frysz, Warren S. Dabney, Haythem Hussein, Jose Luis Lorente-Adame, Robert Shawn Johnson, Scott Brainard, Christopher Michael Williams
  • Patent number: 7920916
    Abstract: One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: April 5, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Kishore Kumar Kondabatni, Christopher Michael Williams, Ryan Thomas Bauer, Scott Brainard, Qingshan Ye, Warren S. Dabney, Robert A. Stevenson, Jeff Fleigle, Holly Noelle Moschiano
  • Publication number: 20110054582
    Abstract: A shielded component or network for an active medical device (AMD) implantable lead includes (1) an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, (2) a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and (3) an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to a account for a shift in its inductance to a second inductive value when shielded.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 3, 2011
    Applicant: GREATBATCH LTD.
    Inventors: Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo
  • Publication number: 20110043297
    Abstract: Decoupling circuits are provided which transfer energy induced from an MRI pulsed RF field to the housing for an active implantable medical device (AIMD) which serves as an energy dissipating surface. A novel L-C input trap filter is provided which has a dual function. The L-C trap acts as a broadband low pass EMI filter while at the same time also acts as an L-C trap in order to divert induced RF energy from the lead to the housing of the AIMD.
    Type: Application
    Filed: September 27, 2010
    Publication date: February 24, 2011
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Warren S. Dabney, Robert Shawn Johnson, Scott W. Kelley
  • Publication number: 20110040343
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: November 3, 2010
    Publication date: February 17, 2011
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo
  • Publication number: 20110032331
    Abstract: A 3-dimensional (3D) video receiver may be operable to deinterlace a decompressed 3D video frame having a 3D video interlaced format to generate a first 3D video frame having a first 3D video progressive format. The generated first 3D video frame having the first 3D video progressive format may be converted to generate a second 3D video frame having a second 3D video progressive format. The generated first 3D video frame having the first 3D video progressive format may be scaled to generate the second 3D video frame having the second 3D video progressive format. When the 3D video receiver operates in an electronic program guide mode or a graphics over video mode, the generated second 3D video frame may be blended with graphics. The second 3D video frame comprising a 50Hz frame rate may be frame-rate upconverted to a third 3D video frame comprising a 60Hz frame rate.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 10, 2011
    Inventors: Xuemin Chen, Chris Payson, Darren Neuman, Jason Herrick, Val (Shawn) Johnson
  • Publication number: 20110032332
    Abstract: A 3-dimensional (3D) video receiver may be operable to scale a decompressed 3D video frame having a first 3D video progressive format to generate a 3D video frame having a second 3D video progressive format, where the second 3D video progressive format comprises a high-definition multimedia interface (HDMI) format. When operating in an electronic program guide mode or a graphics over video mode, the 3D video frame having the second 3D video progressive format may be blended with graphics. The 3D video frame having the second 3D video progressive format may be converted to generate a 3D video frame having a 3D video interlaced format by performing a pulldown. The 3D video frame having the second 3D video progressive format at a 50 Hz frame rate may be frame-rate upconverted to generate a 3D video frame having a third 3D video progressive format at a 60 Hz frame rate.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 10, 2011
    Inventors: Darren Neuman, Xuemin Chen, Chris Payson, Jason Herrick, Val (Shawn) Johnson
  • Publication number: 20110032333
    Abstract: A 3-dimensional (3D) video receiver may be operable to convert a decompressed 3D video frame having a 3D video interlaced format to generate a first 3D video frame having a first 3D video progressive format by performing an inverse pulldown. The generated first 3D video frame having the first 3D video progressive format may be converted to generate a second 3D video frame having a second 3D video progressive format. The generated first 3D video frame having the first 3D video progressive format may be scaled to generate the second 3D video frame having the second 3D video progressive format. When the 3D video receiver is operating in an electronic program guide (EPG) mode or in a graphics over video mode, the generated second 3D video frame having the second 3D video progressive format may be blended with graphics.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 10, 2011
    Inventors: Darren Neuman, Xuemin Chen, Chris Payson, Jason Herrick, Val (Shawn) Johnson
  • Publication number: 20110022140
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
    Type: Application
    Filed: October 12, 2010
    Publication date: January 27, 2011
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Barry C. Muffoletto, Warren S. Dabney, Christine A. Frysz, Christopher Michael Williams, Holly Noelle Moschiano, Jeff Fleigle, Kishore Kumar Kondabatni, Richard L. Brendel, Robert Shawn Johnson, Scott Brainard, Henry R. Halperin, Albert C. Lardo
  • Publication number: 20110004283
    Abstract: A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
    Type: Application
    Filed: September 27, 2010
    Publication date: January 6, 2011
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Richard L. Brendel, Christine A. Frysz, Warren S. Dabney, Haythem Hussein, Jose Luis Lorente-Adame, Robert Shawn Johnson, Scott Brainard, Christopher Michael Williams
  • Publication number: 20100324639
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
    Type: Application
    Filed: August 5, 2010
    Publication date: December 23, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Barry C. Muffoletto, Warren S. Dabney, Christine A. Frysz, Christopher Michael Williams, Holly Noelle Moschiano, Jeff Fleigle, Kishore Kumar Kondabatni, Richard L. Brendel, Robert Shawn Johnson, Scott Brainard, Henry R. Halperin, Albert C. Lardo
  • Publication number: 20100324640
    Abstract: A lead body adapted for in-vivo implantation in a living subject includes a proximal end configured for electrical and mechanical connection to a therapy or a monitoring device, and a distal end. A collar is disposed at the distal end of the lead body, and a casing is disposed within the collar and is translatable along a central longitudinal axis of the collar. At least one electrical conductor extends substantially the length of the lead body, and an electronic component is disposed within the casing and conductively coupled to the electrical conductor. An electrode is mechanically connected to the casing and conductively coupled to the electronic component. A seal is disposed between the casing assembly and the collar to prevent passage of ionic fluid into the lead body through its distal end.
    Type: Application
    Filed: September 1, 2010
    Publication date: December 23, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Ryan Thomas Bauer, Scott Brainard, Lawrence M. Kane, Warren S. Dabney, Robert Shawn Johnson, Robert A. Stevenson, Holly Noelle Moschiano
  • Publication number: 20100280584
    Abstract: A lead extending exteriorly from an active implantable medical device (AIMD) is at least partially ensheathed within an electromagnetic interference (EMI) shield. The AIMD has a conductive equipotential surface to which the EMI shield may be conductively coupled. An impeding circuit may be provided for raising the high frequency impedance of the lead. An energy diversion circuit may also be provided for conductively coupling the lead to the EMI shield.
    Type: Application
    Filed: May 26, 2010
    Publication date: November 4, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Robert A. Stevenson, Warren S. Dabney, Holly Noelle Moschiano, Kishore Kumar Kondabatni, Neal Nesselbeck, Joseph Spaulding, Henry R. Halperin, Albert C. Lardo
  • Publication number: 20100231327
    Abstract: One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 16, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Kishore Kumar Kondabatni, Christopher Michael Williams, Ryan Thomas Bauer, Scott Brainard, Qingshan Ye, Warren S. Dabney, Robert A. Stevenson, Jeff Fleigle, Holly Noelle Moschiano
  • Publication number: 20100208397
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch disposed between the diversion circuit and the AIMD electronics for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: March 25, 2010
    Publication date: August 19, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard
  • Publication number: 20100198312
    Abstract: A bandstop filter having optimum component values is provided for a lead of an active implantable medical device (AIMD). The bandstop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the implantable lead of the AIMD, wherein values of capacitance and inductance are selected such that the bandstop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the bandstop filter to attenuate current flow through the implantable lead along a range of selected frequencies.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 5, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Henry R. Halperin
  • Publication number: 20100191236
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: February 17, 2010
    Publication date: July 29, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo, Scott W. Kelley
  • Publication number: 20100174349
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 8, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Barry C. Muffoletto, Warren S. Dabney, Christine A. Frysz, Christopher Michael Williams, Holly Noelle Moschiano, Jeff Fleigle, Kishore Kumar Kondabatni, Richard L. Brendel, Robert Shawn Johnson, Scott Brainard, Henry R. Halperin, Albert C. Lardo