Patents by Inventor Shawn D. Lyonsmith

Shawn D. Lyonsmith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130011940
    Abstract: Methods for reducing electron beam induced damage on semiconductor substrates employ compositions such as small chain organic solvents and non-neutral pH solutions to reduce or eliminate charge imbalances on semiconductor substrates caused by electron beam inspection of the semiconductor substrates. Damage to semiconductor substrates by electron beam inspection processes may also be reduced by generating or otherwise forming passivation films on a semiconductor substrate following electron beam inspection.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: David A. Daycock, Paul A. Morgan, Shawn D. Lyonsmith, Curtis R. Olson
  • Patent number: 8334209
    Abstract: Methods for reducing electron beam induced damage on semiconductor substrates employ compositions such as small chain organic solvents and non-neutral pH solutions to reduce or eliminate charge imbalances on semiconductor substrates caused by electron beam inspection of the semiconductor substrates. Damage to semiconductor substrates by electron beam inspection processes may also be reduced by generating or otherwise forming passivation films on a semiconductor substrate following electron beam inspection.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: December 18, 2012
    Assignee: Micron Technology, Inc.
    Inventors: David A. Daycock, Paul A. Morgan, Shawn D. Lyonsmith, Curtis R. Olson
  • Patent number: 8026501
    Abstract: A method that may be applied to imaging and identifying defects and contamination on the surface of an integrated circuit is described. An energetic beam, such as an electron beam, may be directed at a selected IC location having a layer of a solid, fluid, or gaseous reactive material formed over the surface. The energetic beam disassociates the reactive material in the region into chemical radicals that either chemically etch the surface preferentially, or deposit a thin layer of a conductive material over the local area around the energetic beam. The surface may be examined as various layers are selectively etched to decorate defects and/or as various layers are locally deposited in the area around the energetic beam. SEM imaging and other analytic methods may be used to identify the problem more easily.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: September 27, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Mark J. Williamson, Paul M. Johnson, Shawn D. Lyonsmith, Gurtej S. Sandhu, Justin R. Arrington
  • Publication number: 20100320384
    Abstract: A method that may be applied to imaging and identifying defects and contamination on the surface of an integrated circuit is described. An energetic beam, such as an electron beam, may be directed at a selected IC location having a layer of a solid, fluid, or gaseous reactive material formed over the surface. The energetic beam disassociates the reactive material in the region into chemical radicals that either chemically etch the surface preferentially, or deposit a thin layer of a conductive material over the local area around the energetic beam. The surface may be examined as various layers are selectively etched to decorate defects and/or as various layers are locally deposited in the area around the energetic beam. SEM imaging and other analytic methods may be used to identify the problem more easily.
    Type: Application
    Filed: August 26, 2010
    Publication date: December 23, 2010
    Inventors: Mark J. Williamson, Paul M. Johnson, Shawn D. Lyonsmith, Gurtel S. Sandhu, Justin R. Arrington
  • Patent number: 7791055
    Abstract: A method of imaging and identifying defects and contamination on the surface of an integrated circuit is described. The method may be used on areas smaller than one micron in diameter. An energetic beam, such as an electron beam, is directed at a selected IC location having a layer of a solid, fluid or gaseous reactive material formed over the surface. The energetic beam disassociates the reactive material in the region into chemical radicals that either chemically etch the surface preferentially, or deposit a thin layer of a conductive material over the local area around the energetic beam. The surface may be examined as various layers are selectively etched to decorate defects and/or as various layers are locally deposited in the area around the energetic beam. SEM imaging and other analytic methods may be used to identify the problem more easily.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: September 7, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Mark J. Williamson, Paul M. Johnson, Shawn D. Lyonsmith, Gurtej S. Sandhu, Justin R. Arrington
  • Publication number: 20080076263
    Abstract: Methods for reducing electron beam induced damage on semiconductor substrates employ compositions such as small chain organic solvents and non-neutral pH solutions to reduce or eliminate charge imbalances on semiconductor substrates caused by electron beam inspection of the semiconductor substrates. Damage to semiconductor substrates by electron beam inspection processes may also be reduced by generating or otherwise forming passivation films on a semiconductor substrate following electron beam inspection.
    Type: Application
    Filed: September 21, 2006
    Publication date: March 27, 2008
    Inventors: David A. Daycock, Paul A. Morgan, Shawn D. Lyonsmith, Curtis R. Olson
  • Publication number: 20080006786
    Abstract: A method of imaging and identifying defects and contamination on the surface of an integrated circuit is described. The method may be used on areas smaller than one micron in diameter. An energetic beam, such as an electron beam, is directed at a selected IC location having a layer of a solid, fluid or gaseous reactive material formed over the surface. The energetic beam disassociates the reactive material in the region into chemical radicals that either chemically etch the surface preferentially, or deposit a thin layer of a conductive material over the local area around the energetic beam. The surface may be examined as various layers are selectively etched to decorate defects and/or as various layers are locally deposited in the area around the energetic beam. SEM imaging and other analytic methods may be used to identify the problem more easily.
    Type: Application
    Filed: July 10, 2006
    Publication date: January 10, 2008
    Inventors: Mark J. Williamson, Paul M. Johnson, Shawn D. Lyonsmith, Gurtej S. Sandhu, Justin R. Arrington
  • Patent number: 6919612
    Abstract: An improved isolation structure for use in an integrated circuit and a method for making the same is disclosed. In a preferred embodiment, an silicon dioxide, polysilicon, silicon dioxide stack is formed on a crystalline silicon substrate. The active areas are etched to expose the substrate, and sidewall oxides are formed on the resulting stacks to define the isolation structures, which in a preferred embodiment constitute dielectric boxes containing the polysilicon in their centers. Epitaxial silicon is grown on the exposed areas of substrate so that it is substantially as thick as the isolation structure, and these grown areas define the active areas of the substrate upon which electrical structures such as transistors can be formed. While the dielectric box provides isolation, further isolation can be provided by placing a contact to the polysilicon within the box and by providing a bias voltage to the polysilicon.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: July 19, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Darwin A. Clampitt, Shawn D. Lyonsmith, Regan S. Tsui
  • Patent number: 6716719
    Abstract: An improved isolation structure for use in an integrated circuit and a method for making the same is disclosed. In a preferred embodiment, an silicon dioxide, polysilicon, silicon dioxide stack is formed on a crystalline silicon substrate. The active areas are etched to expose the substrate, and sidewall oxides are formed on the resulting stacks to define the isolation structures, which in a preferred embodiment constitute dielectric boxes containing the polysilicon in their centers. Epitaxial silicon is grown on the exposed areas of substrate so that it is substantially as thick as the isolation structure, and these grown areas define the active areas of the substrate upon which electrical structures such as transistors can be formed. While the dielectric box provides isolation, further isolation can be provided by placing a contact to the polysilicon within the box and by providing a bias voltage to the polysilicon.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: April 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Darwin A. Clampitt, Shawn D. Lyonsmith, Regan S. Tsui
  • Publication number: 20030224569
    Abstract: An improved isolation structure for use in an integrated circuit and a method for making the same is disclosed. In a preferred embodiment, an silicon dioxide, polysilicon, silicon dioxide stack is formed on a crystalline silicon substrate. The active areas are etched to expose the substrate, and sidewall oxides are formed on the resulting stacks to define the isolation structures, which in a preferred embodiment constitute dielectric boxes containing the polysilicon in their centers. Epitaxial silicon is grown on the exposed areas of substrate so that it is substantially as thick as the isolation structure, and these grown areas define the active areas of the substrate upon which electrical structures such as transistors can be formed. While the dielectric box provides isolation, further isolation can be provided by placing a contact to the polysilicon within the box and by providing a bias voltage to the polysilicon.
    Type: Application
    Filed: May 29, 2002
    Publication date: December 4, 2003
    Inventors: Darwin A. Clampitt, Shawn D. Lyonsmith, Regan S. Tsui
  • Publication number: 20030224566
    Abstract: An improved isolation structure for use in an integrated circuit and a method for making the same is disclosed. In a preferred embodiment, an silicon dioxide, polysilicon, silicon dioxide stack is formed on a crystalline silicon substrate. The active areas are etched to expose the substrate, and sidewall oxides are formed on the resulting stacks to define the isolation structures, which in a preferred embodiment constitute dielectric boxes containing the polysilicon in their centers. Epitaxial silicon is grown on the exposed areas of substrate so that it is substantially as thick as the isolation structure, and these grown areas define the active areas of the substrate upon which electrical structures such as transistors can be formed. While the dielectric box provides isolation, further isolation can be provided by placing a contact to the polysilicon within the box and by providing a bias voltage to the polysilicon.
    Type: Application
    Filed: May 29, 2003
    Publication date: December 4, 2003
    Inventors: Darwin A. Clampitt, Shawn D. Lyonsmith, Regan S. Tsui