Patents by Inventor Shawn Lawrence

Shawn Lawrence has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100235663
    Abstract: Apparatus and techniques relating to data interface power consumption control are disclosed. Components of a data transfer module may be selectively moved between their normal operating states and reduced power states at times when the data transfer module is not to be used for transferring data. Decisions as to particular components that are to be moved to their reduced power states may be based on respective timing characteristics of the components and/or respective power consumption characteristics of the components, for example. In some embodiments, an action may be performed to reduce a powering up time of the data transfer module when normal operation of the data transfer module is to resume. In the case of a multiple-connection interface having respective data transfer modules for each connection, the interface may be partially shut down by moving a subset of the data transfer modules into reduced power states.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 16, 2010
    Applicant: CORTINA SYSTEMS, INC.
    Inventors: Fredrik Olsson, Shawn Lawrence Scouten, Ryan Patrick Donohue
  • Patent number: 7776565
    Abstract: Methods for manipulating carbohydrate processing pathways in cells of interest are provided. Methods are directed at manipulating multiple pathways involved with the sialylation reaction by using recombinant DNA technology and substrate feeding approaches to enable the production of sialylated glycoproteins in cells of interest. These carbohydrate engineering efforts encompass the implementation of new carbohydrate bioassays, the examination of a selection of insect cell lines and the use of bioinformatics to identify gene sequences for critical processing enzymes. The compositions comprise cells of interest producing sialylated glycoproteins. The methods and compositions are useful for heterologous expression of glycoproteins.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: August 17, 2010
    Assignees: The John Hopkins University, Human Genome Sciences, Inc.
    Inventors: Michael J. Betenbaugh, Shawn Lawrence, Yuan C. Lee, Timothy A. Coleman
  • Publication number: 20090226968
    Abstract: Methods for manipulating carbohydrate processing pathways in cells of interest are provided. Methods are directed at manipulating multiple pathways involved with the sialylation reaction by using recombinant DNA technology and substrate feeding approaches to enable the production of sialylated glycoproteins in cells of interest. These carbohydrate engineering efforts encompass the implementation of new carbohydrate bioassays, the examination of a selection of insect cell lines and the use of bioinformatics to identify gene sequences for critical processing enzymes. The compositions comprise cells of interest producing sialylated glycoproteins. The methods and compositions are useful for heterologous expression of glycoproteins.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 10, 2009
    Inventors: Michael J. Betenbaugh, Shawn Lawrence, Yuan C. Lee, Timothy A. Coleman
  • Publication number: 20080094107
    Abstract: Signal magnitude comparison apparatus and methods are disclosed. A first input circuit receives a differential input signal and provides a first output signal based on a magnitude of the differential input signal. A second input circuit is operatively coupled to the first input circuit and is operable to receive a second input signal, which may also be a differential signal, and to provide a second output signal based on a magnitude of the second input signal. The operative coupling between the first and second input circuits results in the first output signal and the second output signal forming a differential output signal that is indicative of a difference between the magnitude of the first differential input signal and the magnitude of the second input signal.
    Type: Application
    Filed: October 20, 2006
    Publication date: April 24, 2008
    Inventors: Stephane Dallaire, Brian Glenn Wall, Shawn Lawrence Scouten, Colin Harvey Cramm, Kenji Suzuki, Stephen Alie, Andrew Deczky
  • Patent number: 7221623
    Abstract: The use of a pressure compensation system and composite polymer materials results in a new type of outboard sensor assembly, of the type used to monitor the status and location of towed array systems from boats. The inventive system is lower in cost, easier to manufacture in quantity, lighter weight, less likely to leak, and with a lower failure rate than conventional systems. The pressure compensation system makes use of a two (or more) phase slurry system to provide temperature compensation.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: May 22, 2007
    Assignee: Texas Research International, Inc.
    Inventors: Joseph S Thornton, Christopher Pearson Thornton, Shawn Lawrence Arnett
  • Patent number: 7206256
    Abstract: The use of a pressure compensation system and composite polymer materials results in a new type of outboard sensor assembly, of the type used to monitor the status and location of towed array systems from boats. The inventive system is lower in cost, easier to manufacture in quantity, lighter weight, less likely to leak, and with a lower failure rate than conventional systems.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: April 17, 2007
    Assignee: Texas Research International, Inc.
    Inventors: Joseph S Thornton, Christopher Pearson Thornton, Shawn Lawrence Arnett
  • Publication number: 20050287637
    Abstract: Methods for manipulating carbohydrate processing pathways in cells of interest are provided. Methods are directed at manipulating multiple pathways involved with the sialylation reaction by using recombinant DNA technology and substrate feeding approaches to enable the production of sialylated glycoproteins in cells of interest. These carbohydrate engineering efforts encompass the implementation of new carbohydrate bioassays, the examination of a selection of insect cell lines and the use of bioinformatics to identify gene sequences for critical processing enzymes. The compositions comprise cells of interest producing sialylated glycoproteins. The methods and compositions are useful for heterologous expression of glycoproteins.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 29, 2005
    Inventors: Michael Betenbaugh, Shawn Lawrence, Yuan Lee, Timothy Coleman
  • Patent number: 6949372
    Abstract: Methods for manipulating carbohydrate processing pathways in cells of interest are provided. Methods are directed at manipulating multiple pathways involved with the sialylation reaction by using recombinant DNA technology and substrate feeding approaches to enable the production of sialylated glycoproteins in cells of interest. These carbohydrate engineering efforts encompass the implementation of new carbohydrate bioassays, the examination of a selection of insect cell lines and the use of bioinformatics to identify gene sequences for critical processing enzymes. The compositions comprise cells of interest producing sialylated glycoproteins. The methods and compositions are useful for heterologous expression of glycoproteins.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: September 27, 2005
    Assignees: The Johns Hopkins University, Human Genome Sciences, Inc.
    Inventors: Michael J. Betenbaugh, Shawn Lawrence, Yuan C. Lee, Timothy A. Coleman
  • Publication number: 20040061390
    Abstract: An polyphase machine includes a stator having a plurality of parallel stator windings, a plurality of phase voltage terminals, each of the stator windings fastened to a corresponding phase voltage terminal, and at least one neutral terminal, each of the stator windings forming a common ground fastened to the neutral terminal. At least one of the stator windings is fastened to the corresponding phase voltage terminal or neutral terminal by a connection that does not involve a heat induced joining method. In an exemplary embodiment, the connection includes a lead wire protruding from the stator winding and terminated with a connector, such as a ring lug, fastened to the respective terminal with a mechanical fastener, such as a rivet or threaded rivet. A method for connecting stator windings in a polyphase machine is also provided.
    Type: Application
    Filed: October 1, 2002
    Publication date: April 1, 2004
    Inventors: Shawn Lawrence Baker-Bachman, Darin L. Denton, Jeff Frazzini, Josh Ley
  • Publication number: 20020142386
    Abstract: Methods for manipulating carbohydrate processing pathways in cells of interest are provided. Methods are directed at manipulating multiple pathways involved with the sialylation reaction by using recombinant DNA technology and substrate feeding approaches to enable the production of sialylated glycoproteins in cells of interest. These carbohydrate engineering efforts encompass the implementation of new carbohydrate bioassays, the examination of a selection of insect cell lines and the use of bioinformatics to identify gene sequences for critical processing enzymes. The compositions comprise cells of interest producing sialylated glycoproteins. The methods and compositions are useful for heterologous expression of glycoproteins.
    Type: Application
    Filed: August 16, 2001
    Publication date: October 3, 2002
    Inventors: Michael J. Betenbaugh, Shawn Lawrence, Yuan C. Lee, Timothy A. Coleman