Patents by Inventor Shawna Liff

Shawna Liff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128205
    Abstract: Embodiments disclosed herein include electronic packages and methods of fabricating electronic packages. In an embodiment, an electronic package comprises an interposer, where a cavity passes through the interposer, and a nested component in the cavity. In an embodiment, the electronic package further comprises a die coupled to the interposer by a first interconnect and coupled to the nested component by a second interconnect. In an embodiment, the first and second interconnects comprise a first bump, a bump pad over the first bump, and a second bump over the bump pad.
    Type: Application
    Filed: December 27, 2023
    Publication date: April 18, 2024
    Inventors: Debendra MALLIK, Ravindranath MAHAJAN, Robert SANKMAN, Shawna LIFF, Srinivas PIETAMBARAM, Bharat PENMECHA
  • Publication number: 20240063143
    Abstract: Techniques and mechanisms to mitigate warping of a composite chiplet. In an embodiment, multiple via structures each extend through an insulator material in one of multiple levels of a composite chiplet. The insulator material extends around an integrated circuit (IC) component in the level. For a given one of the multiple via structures, a respective annular structure extends around the via structure to mitigate a compressive (or tensile) stress due to expansion (or contraction) of the via structure. In another embodiment, the composite chiplet additionally or alternatively comprises a structural support layer on the multiple levels, wherein the structural support layer has formed therein or thereon dummy via structures or a warpage compensation film.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Intel Corporation
    Inventors: Adel Elsherbini, Lance C. Hibbeler, Omkar Karhade, Chytra Pawashe, Kimin Jun, Feras Eid, Shawna Liff, Mohammad Enamul Kabir, Bhaskar Jyoti Krishnatreya, Tushar Talukdar, Wenhao Li
  • Publication number: 20240063180
    Abstract: Quasi-monolithic multi-die composites including a primary fill structure within a space between adjacent IC dies. A fill material layer, which may have inorganic composition, may be bonded to a host substrate and patterned to form a primary fill structure that occupies a first portion of the host substrate. IC dies may be bonded to regions of the host substrate within openings where the primary fill structure is absent to have a spatial arrangement complementary to the primary fill structure. The primary fill structure may have a thickness substantially matching that of IC dies and/or be co-planar with a surface of one or more of the IC dies. A gap fill material may then be deposited within remnants of the openings to form a secondary fill structure that occupies space between the IC dies and the primary fill structure.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Intel Corporation
    Inventors: Kimin Jun, Adel Elsherbini, Omkar Karhade, Bhaskar Jyoti Krishnatreya, Mohammad Enamul Kabir, Jiraporn Seangatith, Tushar Talukdar, Shawna Liff, Johanna Swan, Feras Eid
  • Publication number: 20240063142
    Abstract: Multi-die packages including IC die crack mitigation features. Prior to the bonding of IC dies to a host substrate, the IC dies may be shaped, for example with a corner radius or chamfer. After bonding the shaped IC dies, a fill comprising at least one inorganic material may be deposited over the IC dies, for example to backfill a space between adjacent IC dies. With the benefit of a greater IC die sidewall slope and/or smoother surface topology associated with the shaping process, occurrences of stress cracking within the fill and concomitant damage to the IC dies may be reduced. Prior to depositing a fill, a barrier layer may be deposited over the IC die to prevent cracks that might form in the fill material from propagating into the IC die.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Intel Corporation
    Inventors: Adel Elsherbini, Wenhao Li, Bhaskar Jyoti Krishnatreya, Tushar Talukdar, Botao Zhang, Yi Shi, Haris Khan Niazi, Feras Eid, Nagatoshi Tsunoda, Xavier Brun, Mohammad Enamul Kabir, Omkar Karhade, Shawna Liff, Jiraporn Seangatith
  • Publication number: 20240063133
    Abstract: A multichip composite device includes on- and off-die metallization layers, inorganic dielectric material, and stacked hybrid-bonded dies. On-die metallization layers may be thinner than off-die metallization layers. The multichip composite device may include a structural substrate. Off-die metallization layers may be above and below the stacked hybrid-bonded dies. A substrate may couple the multichip composite device to a power supply in a multichip system. Forming a multichip composite device includes hybrid bonding dies and forming inorganic dielectric material.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Intel Corporation
    Inventors: Adel Elsherbini, Beomseok Choi, Feras Eid, Omkar Karhade, Shawna Liff
  • Publication number: 20240063091
    Abstract: Microelectronic devices, assemblies, and systems include a multichip composite device having one or more chiplets bonded to a base die and an inorganic dielectric material adjacent the chiplets and over the base die. The multichip composite device is coupled to a structural member that is made of or includes a heat conducting material, or has integrated fluidic cooling channels to conduct heat from the chiplets and the base die.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Intel Corporation
    Inventors: Adel Elsherbini, Feras Eid, Scot Kellar, Yoshihiro Tomita, Rajiv Mongia, Kimin Jun, Shawna Liff, Wenhao Li, Johanna Swan, Bhaskar Jyoti Krishnatreya, Debendra Mallik, Krishna Vasanth Valavala, Lei Jiang, Xavier Brun, Mohammad Enamul Kabir, Haris Khan Niazi, Jiraporn Seangatith, Thomas Sounart
  • Publication number: 20240063072
    Abstract: Composite integrated circuit (IC) device processing, including selective removal of inorganic dielectric material. Inorganic dielectric material may be deposited, modified with laser exposure, and selectively removed. Laser exposure parameters may be adjusted using surface topography measurements. Inorganic dielectric material removal may reduce surface topography. Vias and trenches of varying size, shape, and depth may be concurrently formed without an etch-stop layer. A composite IC device may include an IC die, a conductive via, and a conductive line adjacent a compositionally homogenous inorganic dielectric material.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Intel Corporation
    Inventors: Adel Elsherbini, Shawna Liff, Kimin Jun, Veronica Strong, Aleksandar Aleksov, Jiraporn Seangatith, Mohammad Enamul Kabir, Johanna Swan, Tushar Talukdar, Omkar Karhade
  • Publication number: 20240063147
    Abstract: Techniques and mechanisms to mitigate corrosion to via structures of a composite chiplet. In an embodiment, a composite chiplet comprises multiple integrated circuit (IC) components which are each in a different respective one of multiple levels. One or more conductive vias extend through an insulator layer in a first level of the multiple levels. An annular structure of the composite chiplet extends vertically through the insulator layer, and surrounds the one or more conductive vias in the insulator layer. The annular structure mitigates an exposure of the one or more conductive vias to moisture which is in a region of the insulator layer that is not surrounded by the annular structure. In another embodiment, the annular structure further surrounds an IC component which extends in the insulator layer.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Intel Corporation
    Inventors: Adel Elsherbini, Mohammad Enamul Kabir, Johanna Swan, Omkar Karhade, Kimin Jun, Feras Eid, Shawna Liff, Xavier Brun, Bhaskar Jyoti Krishnatreya, Tushar Talukdar, Haris Khan Niazi
  • Publication number: 20240038687
    Abstract: Embodiments disclosed herein include electronic packages and methods of fabricating electronic packages. In an embodiment, an electronic package comprises an interposer, where a cavity passes through the interposer, and a nested component in the cavity. In an embodiment, the electronic package further comprises a die coupled to the interposer by a first interconnect and coupled to the nested component by a second interconnect. In an embodiment, the first and second interconnects comprise a first bump, a bump pad over the first bump, and a second bump over the bump pad.
    Type: Application
    Filed: October 13, 2023
    Publication date: February 1, 2024
    Inventors: Debendra MALLIK, Ravindranath MAHAJAN, Robert SANKMAN, Shawna LIFF, Srinivas PIETAMBARAM, Bharat PENMECHA
  • Publication number: 20240006332
    Abstract: An integrated circuit (IC) device comprises a host component and an IC die directly bonded to the host component. The IC die comprises a substrate material layer and a die metallization level between the substrate material layer and host component. The IC die includes an upper die alignment fiducial between the die metallization level and host component. The upper die alignment fiducial at least partially overlaps one or more metallization features within the die metallization level. In embodiments, at least two orthogonal edges of the upper die alignment fiducial do not overlap any of the metallization features within the die metallization level. In embodiments, the IC die includes a lower die alignment fiducial between the substrate material layer and the die metallization level. The lower die alignment fiducial may at least partially overlap one or more second metallization features within a second die metallization level of the IC die.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Dimitrios Antartis, Nitin A. Deshpande, Siyan Dong, Omkar Karhade, Gwang-soo Kim, Shawna Liff, Siddhartha Mal, Debendra Mallik, Khant Minn, Haris Khan Niazi, Arnab Sarkar, Yi Shi, Botao Zhang
  • Patent number: 11830831
    Abstract: Integration of a side-radiating waveguide launcher system into a semiconductor package beneficially permits the coupling of a waveguide directly to the semiconductor package. Included are a first conductive member and a second conductive member separated by a dielectric material. Also included is a conductive structure, such as a plurality of vias, that conductively couples the first conductive member and the second conductive member. Together, the first conductive member, the second conductive member, and the conductive structure form an electrically conductive side-radiating waveguide launcher enclosing shaped space within the dielectric material. The shaped space includes a narrow first end and a wide second end. An RF excitation element is disposed proximate the first end and a waveguide may be operably coupled proximate the second end of the shaped space.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: November 28, 2023
    Assignee: Intel Corporation
    Inventors: Georgios Dogiamis, Sasha Oster, Johanna Swan, Shawna Liff, Adel Elsherbini, Telesphor Kamgaing, Aleksandar Aleksov
  • Patent number: 11824018
    Abstract: Embodiments disclosed herein include electronic packages and methods of fabricating electronic packages. In an embodiment, an electronic package comprises an interposer, where a cavity passes through the interposer, and a nested component in the cavity. In an embodiment, the electronic package further comprises a die coupled to the interposer by a first interconnect and coupled to the nested component by a second interconnect. In an embodiment, the first and second interconnects comprise a first bump, a bump pad over the first bump, and a second bump over the bump pad.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: November 21, 2023
    Inventors: Debendra Mallik, Ravindranath Mahajan, Robert Sankman, Shawna Liff, Srinivas Pietambaram, Bharat Penmecha
  • Patent number: 11749649
    Abstract: Composite IC chip including a chiplet embedded within metallization levels of a host IC chip. The chiplet may include a device layer and one or more metallization layers interconnecting passive and/or active devices into chiplet circuitry. The host IC may include a device layer and one or more metallization layers interconnecting passive and/or active devices into host chip circuitry. Features of one of the chiplet metallization layers may be directly bonded to features of one of the host IC metallization layers, interconnecting the two circuitries into a composite circuitry. A dielectric material may be applied over the chiplet. The dielectric and chiplet may be thinned with a planarization process, and additional metallization layers fabricated over the chiplet and host chip, for example to form first level interconnect interfaces. The composite IC chip structure may be assembled into a package substantially as a monolithic IC chip.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: September 5, 2023
    Assignee: Intel Corporation
    Inventors: Adel Elsherbini, Johanna Swan, Shawna Liff, Patrick Morrow, Gerald Pasdast, Van Le
  • Patent number: 11735533
    Abstract: Embodiments disclosed herein include electronic packages and methods of fabricating electronic packages. In an embodiment, an electronic package comprises an interposer, where a cavity passes through the interposer, and a nested component in the cavity. In an embodiment, the electronic package further comprises a die coupled to the interposer by a first interconnect and coupled to the nested component by a second interconnect. In an embodiment, the first and second interconnects comprise a first bump, a bump pad over the first bump, and a second bump over the bump pad.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Debendra Mallik, Ravindranath Mahajan, Robert Sankman, Shawna Liff, Srinivas Pietambaram, Bharat Penmecha
  • Patent number: 11735551
    Abstract: Embodiments herein relate to systems, apparatuses, or processes directed to an interconnect joint that includes multiple core balls within a solder compound where the multiple core balls are substantially linearly aligned. The multiple core balls, which may include copper or be a polymer, couple with each other within the solder and form a substantially linear alignment during reflow. In embodiments, four or more core balls may be used to achieve a high aspect ratio interconnect joint with a tight pitch.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Jimin Yao, Shawna Liff, Xin Yan, Numair Ahmed
  • Publication number: 20230245972
    Abstract: Techniques and mechanisms for high interconnect density communication with an interposer. In some embodiments, an interposer comprises a substrate and portions disposed thereon, wherein respective inorganic dielectrics of said portions adjoin each other at a material interface, which extends to each of the substrate and a first side of the interposer. A first hardware interface of the interposer spans the material interface at the first side, wherein a first one of said portions comprises first interconnects which couple the first hardware interface to a second hardware interface at the first side. A second one of said portions includes second interconnects which couple one of first hardware interface or the second hardware interface to a third hardware interface at another side of the interposer. In another embodiment, a metallization pitch feature of the first hardware interface is smaller than a corresponding metallization pitch feature of the second hardware interface.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Applicant: INTEL CORPORATION
    Inventors: Adel Elsherbini, Shawna Liff, Johanna Swan, Gerald Pasdast
  • Patent number: 11694986
    Abstract: A composite integrated circuit (IC) device structure comprising a host chip and a chiplet. The host chip comprises a first device layer and a first metallization layer. The chiplet comprises a second device layer and a second metallization layer that is interconnected to transistors of the second device layer. A top metallization layer comprising a plurality of first level interconnect (FLI) interfaces is over the chiplet and host chip. The chiplet is embedded between a first region of the first device layer and the top metallization layer. The first region of the first device layer is interconnected to the top metallization layer by one or more conductive vias extending through the second device layer or adjacent to an edge sidewall of the chiplet.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: July 4, 2023
    Assignee: Intel Corporation
    Inventors: Adel Elsherbini, Patrick Morrow, Johanna Swan, Shawna Liff, Mauro Kobrinksy, Van Le, Gerald Pasdast
  • Patent number: 11664303
    Abstract: An lithographic reticle may be formed comprising a transparent substrate, a substantially opaque mask formed on the transparent substrate that defines at least one exposure window, wherein the at least one exposure window has a first end, a first filter formed on the transparent substrate within the at least one exposure window and abutting the first end thereof, and a second filter formed on the transparent substrate within the at least one exposure window and abutting the first filter, wherein an average transmissivity of the first filter is substantially one half of a transmissivity of the second filter. In another embodiment, the at least one exposure window includes a third filter abutting the second end and is adjacent the second filter. Further embodiments of the present description include interconnection structures and systems fabricated using the lithographic reticle.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: May 30, 2023
    Assignee: Intel Corporation
    Inventors: Johanna Swan, Henning Braunisch, Aleksandar Aleksov, Shawna Liff, Brandon Rawlings, Veronica Strong
  • Publication number: 20230134049
    Abstract: Embodiments disclosed herein include electronic packages and methods of fabricating electronic packages. In an embodiment, an electronic package comprises an interposer, where a cavity passes through the interposer, and a nested component in the cavity. In an embodiment, the electronic package further comprises a die coupled to the interposer by a first interconnect and coupled to the nested component by a second interconnect. In an embodiment, the first and second interconnects comprise a first bump, a bump pad over the first bump, and a second bump over the bump pad.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 4, 2023
    Inventors: Debendra MALLIK, Ravindranath MAHAJAN, Robert SANKMAN, Shawna LIFF, Srinivas PIETAMBARAM, Bharat PENMECHA
  • Publication number: 20230130935
    Abstract: An integrated circuit device may be formed including an electronic substrate and a metallization structure on the electronic substrate, wherein the metallization structure includes a first level comprising a first dielectric material layer, a second level on the first level, wherein the second level comprises a second dielectric material layer, a third level on the second level, wherein the third level comprises a third dielectric material layer, at least one power/ground structure in the second level, and at least one skip level via extending at least partially through the first dielectric material layer of the first level, through the second dielectric layer of the second level, and at least partially through the third dielectric material layer of the third level, wherein the at least one skip level via comprises a continuous conductive material.
    Type: Application
    Filed: December 23, 2022
    Publication date: April 27, 2023
    Applicant: Intel Corporation
    Inventors: Adel ELSHERBINI, Mauro KOBRINSKY, Shawna LIFF, Johanna SWAN, Gerald PASDAST, Sathya Narasimman TIAGARAJ