Patents by Inventor Shay Gueron

Shay Gueron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180004520
    Abstract: A processor of an aspect includes packed data registers, and a decode unit to decode an instruction. The instruction may indicate a first source packed data to include at least four data elements, to indicate a second source packed data to include at least four data elements, and to indicate a destination storage location. An execution unit is coupled with the packed data registers and the decode unit. The execution unit, in response to the instruction, is to store a result packed data in the destination storage location. The result packed data may include at least four indexes that may identify corresponding data element positions in the first and second source packed data. The indexes may be stored in positions in the result packed data that are to represent a sorted order of corresponding data elements in the first and second source packed data.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 4, 2018
    Applicant: Intel Corporation
    Inventors: Shay Gueron, Vlad Krasnov
  • Publication number: 20170337145
    Abstract: Instructions and logic interrupt and resume paging in secure enclaves. Embodiments include instructions, specify page addresses allocated to a secure enclave, the instructions are decoded for execution by a processor. The processor includes an enclave page cache to store secure data in a first cache line and in a last cache line for a page corresponding to the page address. A page state is read from the first or last cache line for the page when an entry in an enclave page cache mapping for the page indicates only a partial page is stored in the enclave page cache. The entry for a partial page may be set, and a new page state may be recorded in the first cache line when writing-back, or in the last cache line when loading the page when the instruction's execution is being interrupted. Thus the writing-back, or loading can be resumed.
    Type: Application
    Filed: June 2, 2017
    Publication date: November 23, 2017
    Inventors: Carlos V. Rozas, Ilya Alexandrovich, Gilbert Neiger, Francis X. McKeen, Ittai Anati, Vedvyas Shanbhogue, Shay Gueron
  • Publication number: 20170310464
    Abstract: A flexible aes instruction for a general purpose processor is provided that performs aes encryption or decryption using n rounds, where n includes the standard aes set of rounds {10, 12, 14}. A parameter is provided to allow the type of aes round to be selected, that is, whether it is a “last round”. In addition to standard aes, the flexible aes instruction allows an AES-like cipher with 20 rounds to be specified or a “one round” pass.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Applicant: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal
  • Publication number: 20170310468
    Abstract: A flexible aes instruction for a general purpose processor is provided that performs aes encryption or decryption using n rounds, where n includes the standard aes set of rounds {10, 12, 14}. A parameter is provided to allow the type of aes round to be selected, that is, whether it is a “last round”. In addition to standard aes, the flexible aes instruction allows an AES-like cipher with 20 rounds to be specified or a “one round” pass.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Applicant: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal
  • Publication number: 20170310465
    Abstract: A flexible aes instruction for a general purpose processor is provided that performs aes encryption or decryption using n rounds, where n includes the standard aes set of rounds {10, 12, 14}. A parameter is provided to allow the type of aes round to be selected, that is, whether it is a “last round”. In addition to standard aes, the flexible aes instruction allows an AES-like cipher with 20 rounds to be specified or a “one round” pass.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Applicant: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal
  • Publication number: 20170310470
    Abstract: A flexible aes instruction for a general purpose processor is provided that performs aes encryption or decryption using n rounds, where n includes the standard aes set of rounds {10, 12, 14}. A parameter is provided to allow the type of aes round to be selected, that is, whether it is a “last round”. In addition to standard aes, the flexible aes instruction allows an AES-like cipher with 20 rounds to be specified or a “one round” pass.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Applicant: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal
  • Publication number: 20170310462
    Abstract: A flexible aes instruction for a general purpose processor is provided that performs aes encryption or decryption using n rounds, where n includes the standard aes set of rounds {10, 12, 14}. A parameter is provided to allow the type of aes round to be selected, that is, whether it is a “last round”. In addition to standard aes, the flexible aes instruction allows an AES-like cipher with 20 rounds to be specified or a “one round” pass.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Applicant: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal
  • Publication number: 20170310467
    Abstract: A flexible aes instruction for a general purpose processor is provided that performs aes encryption or decryption using n rounds, where n includes the standard aes set of rounds {10, 12, 14}. A parameter is provided to allow the type of aes round to be selected, that is, whether it is a “last round”. In addition to standard aes, the flexible aes instruction allows an AES-like cipher with 20 rounds to be specified or a “one round” pass.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Applicant: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal
  • Publication number: 20170310463
    Abstract: A flexible aes instruction for a general purpose processor is provided that performs aes encryption or decryption using n rounds, where n includes the standard aes set of rounds {10, 12, 14}. A parameter is provided to allow the type of aes round to be selected, that is, whether it is a “last round”. In addition to standard aes, the flexible aes instruction allows an AES-like cipher with 20 rounds to be specified or a “one round” pass.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Applicant: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal
  • Publication number: 20170310469
    Abstract: A flexible aes instruction for a general purpose processor is provided that performs aes encryption or decryption using n rounds, where n includes the standard aes set of rounds {10, 12, 14}. A parameter is provided to allow the type of aes round to be selected, that is, whether it is a “last round”. In addition to standard aes, the flexible aes instruction allows an AES-like cipher with 20 rounds to be specified or a “one round” pass.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Applicant: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal
  • Publication number: 20170310471
    Abstract: A flexible aes instruction for a general purpose processor is provided that performs aes encryption or decryption using n rounds, where n includes the standard aes set of rounds {10, 12, 14}. A parameter is provided to allow the type of aes round to be selected, that is, whether it is a “last round”. In addition to standard aes, the flexible aes instruction allows an AES-like cipher with 20 rounds to be specified or a “one round” pass.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Applicant: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal
  • Publication number: 20170310466
    Abstract: A flexible aes instruction for a general purpose processor is provided that performs aes encryption or decryption using n rounds, where n includes the standard aes set of rounds {10, 12, 14}. A parameter is provided to allow the type of aes round to be selected, that is, whether it is a “last round”. In addition to standard aes, the flexible aes instruction allows an AES-like cipher with 20 rounds to be specified or a “one round” pass.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Applicant: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal
  • Patent number: 9800406
    Abstract: Generally, the present disclosure provides technology modifying a first cryptographic cipher with one or more operations of a second cryptographic cipher. In some embodiments the technology leverages a mathematical relationship between representations of data used in the first and second ciphers to enable the substitution of one or more operations of the first cipher with one or more operations of the second cipher. The resulting modified cipher may in some instances exhibit improved performance and or security, relative to the unmodified first cipher. Methods, computer readable media, and apparatus including or utilizing the technologies are also described.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: October 24, 2017
    Assignee: INTEL CORPORATION
    Inventor: Shay Gueron
  • Publication number: 20170272237
    Abstract: Instructions and logic provide general purpose GF(28) SIMD cryptographic arithmetic functionality. Embodiments include a processor to decode an instruction for a SIMD affine transformation specifying a source data operand, a transformation matrix operand, and a translation vector. The transformation matrix is applied to each element of the source data operand, and the translation vector is applied to each of the transformed elements. A result of the instruction is stored in a SIMD destination register. Some embodiments also decode an instruction for a SIMD binary finite field multiplicative inverse to compute an inverse in a binary finite field modulo an irreducible polynomial for each element of the source data operand. Some embodiments also decode an instruction for a SIMD binary finite field multiplication specifying first and second source data operands to multiply each corresponding pair of elements of the first and second source data operand modulo an irreducible polynomial.
    Type: Application
    Filed: January 13, 2017
    Publication date: September 21, 2017
    Inventor: Shay Gueron
  • Patent number: 9766888
    Abstract: A processor of an aspect includes packed data registers, and a decode unit to decode an instruction. The instruction may indicate a first source packed data to include at least four data elements, indicate a second source packed data to include at least four data elements, and indicate a destination storage location. An execution unit is coupled with the packed data registers and the decode unit. The execution unit, in response to the instruction, is to store a result packed data in the destination storage location. The result packed data may include at least four indexes that may identify corresponding data element positions in the first and second source packed data. The indexes may be stored in positions in the result packed data that are to represent a sorted order of corresponding data elements in the first and second source packed data.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: September 19, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Vlad Krasnov
  • Patent number: 9703733
    Abstract: Instructions and logic interrupt and resume paging in secure enclaves. Embodiments include instructions, specify page addresses allocated to a secure enclave, the instructions are decoded for execution by a processor. The processor includes an enclave page cache to store secure data in a first cache line and in a last cache line for a page corresponding to the page address. A page state is read from the first or last cache line for the page when an entry in an enclave page cache mapping for the page indicates only a partial page is stored in the enclave page cache. The entry for a partial page may be set, and a new page state may be recorded in the first cache line when writing-back, or in the last cache line when loading the page when the instruction's execution is being interrupted. Thus the writing-back, or loading can be resumed.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: July 11, 2017
    Assignee: Intel Corporation
    Inventors: Carlos V. Rozas, Ilya Alexandrovich, Gilbert Neiger, Francis X. McKeen, Ittai Anati, Vedvyas Shanbhogue, Shay Gueron
  • Publication number: 20170195116
    Abstract: Implementations of Advanced Encryption Standard (AES) encryption and decryption processes are disclosed. In one embodiment of S-box processing, a block of 16 byte values is converted, each byte value being converted from a polynomial representation in GF(256) to a polynomial representation in GF((22)4). Multiplicative inverse polynomial representations in GF((22)4) are computed for each of the corresponding polynomial representations in GF((22)4). Finally corresponding multiplicative inverse polynomial representations in GF((22)4) are converted and an affine transformation is applied to generate corresponding polynomial representations in GF(256). In an alternative embodiment of S-box processing, powers of the polynomial representations are computed and multiplied together in GF(256) to generate multiplicative inverse polynomial representations in GF(256).
    Type: Application
    Filed: December 12, 2014
    Publication date: July 6, 2017
    Inventors: Michael E. Kounavis, Shay Gueron, Ram Krishnamurthy, Sanu K. Mathew
  • Patent number: 9654281
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 16, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G. Dixon, Srinivas Chennupaty, Michael E. Kounavis
  • Patent number: 9654282
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 16, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G. Dixon, Srinivas Chennupaty, Michael E. Kounavis
  • Patent number: 9647831
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 9, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G. Dixon, Srinivas Chennupaty, Michael E. Kounavis