Patents by Inventor Sheila F. Chopin

Sheila F. Chopin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8643197
    Abstract: A mold compound is provided for encapsulating a semiconductor device (101). The mold compound comprises at least approximately 70% by weight silica fillers, at least approximately 10% by weight epoxy resin system, and beneficial ions that are beneficial with respect to copper ball bond corrosion. A total level of the beneficial ions in the mold compound is at least approximately 100 ppm.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: February 4, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sheila F. Chopin, Varughese Mathew, Leo M. Higgins, III, Chu-Chung Lee
  • Publication number: 20130319129
    Abstract: A technique for testing the compatibility of an encapsulation material and a wire bond included at an unencapsulated assembly. The technique includes immersing the assembly in an encapsulating compound extract. The assembly includes a semiconductor die and a bonding wire affixed to a metalized pad of the semiconductor die by the wire bond. After the immersing, a mechanical strength of the wire bond is determined.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Varughese Mathew, Sheila F. Chopin, Leo M. Higgins, III
  • Publication number: 20120193737
    Abstract: A method of packaging a magnetoresistive random access memory (MRAM) die includes providing a lead frame having a die pad and lead fingers. The MRAM die is attached to the die pad with a first die attach adhesive and bond pads of the MRAM die are electrically connected to the lead fingers of the lead frame with wires using a wire bonding process. A pre-formed composite magnetic shield is attached to a top surface of the MRAM die with a second die attach adhesive. The magnetic shield includes a magnetic permeable filler material dispersed within an organic matrix. An encapsulating material is dispensed onto a top surface of the lead frame, MRAM die and magnetic shield such that the encapsulating material covers the MRAM die and the magnetic shield. The encapsulating material is then cured.
    Type: Application
    Filed: December 21, 2011
    Publication date: August 2, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Xingshou Pang, Sheila F. Chopin, Jun Li, Xuesong Xu
  • Patent number: 7803662
    Abstract: A method for curing an encapsulant that surrounds a plurality of integrated circuits on a strip that forms a strip assembly is provided. The strip assembly is composed of units for packaging and the units each have edges defining a perimeter of the unit. The strip assembly is placed on a shelf. Pressure from deformable material or springs is applied to the strip assembly in regions of the strip. The regions are located at one of a group of locations consisting of along unit edges and centered between unit edges. Heat of sufficient temperature is applied for a sufficient duration to cure the encapsulant. The step of applying pressure continues during the application of heat for curing.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: September 28, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Yuan Yuan, Sheila F. Chopin
  • Publication number: 20090081831
    Abstract: A method for curing an encapsulant that surrounds a plurality of integrated circuits on a strip that forms a strip assembly is provided. The strip assembly is composed of units for packaging and the units each have edges defining a perimeter of the unit. The strip assembly is placed on a shelf. Pressure from deformable material or springs is applied to the strip assembly in regions of the strip. The regions are located at one of a group of locations consisting of along unit edges and centered between unit edges. Heat of sufficient temperature is applied for a sufficient duration to cure the encapsulant. The step of applying pressure continues during the application of heat for curing.
    Type: Application
    Filed: September 24, 2007
    Publication date: March 26, 2009
    Inventors: Yuan Yuan, Sheila F. Chopin
  • Patent number: 7215014
    Abstract: A packaged integrated circuit includes a die surrounded by an encapsulant in which leads are used to electrically connect the die, which is internal to the encapsulant, externally. The leads have a primary metal that is used for electrical conduction and physical support. The external portion of the lead is coated with another metal, typically tin, that is useful for soldering. This tin layer is formed in a manner that ensures that it is porous. Although porous is generally thought to be a bad characteristic, it turns out to be very effective in absorbing stress and thus retarding whisker growth. Whisker growth, which can short adjacent leads together as well as cause other deleterious effects, has been a major source of failures in packaged integrated circuits. An additional layer of very thin tin that is non-porous can be added before or after the porous tin layer has been deposited.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: May 8, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Peng Su, Sheila F. Chopin, Nhat D. Vo
  • Patent number: 7172927
    Abstract: During the curing process of the package strips, especially during post encapsulant cure (PEC), undesirable warpage of package strips occurs. A carrier having angled lands and side-insertion clamp structures with angled clamp fins may be used to control this cure-induced warpage of package strips during PEC. In one embodiment, the angled lands and angled side-insertions clamps are used to clamp the edges of the package strip in order to introduce an intentional deformation which counters warpage which occurs during PEC. The angled lands and side-insertion clamps may be at any angle (fixed or adjustable). The side-insertion clamps may be inserted before or after insertion of the package strips into the carrier. Once the package strips are in the carrier and resting on the angled lands, a force may be applied to the side-insertion clamps to clamp the edges of the package strips between a clamp fin and an angled land.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: February 6, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Yuan Yuan, Sheila F. Chopin
  • Patent number: 7015585
    Abstract: An integrated circuit is packaged using a package substrate that has a bottom side with a regular array of connection points and a top side with the integrated circuit on it. The package substrate also has vias that are present to provide electrical connection between the top and bottom sides. The vias have a via capture pad that is used to directly receive a wire bond. Thus, the wires from the integrated circuit to the top side directly contact the vias at their capture pads. In such a connection there is then no need for a trace from location where the wire is bonded on the top side to the via. This saves cost. Further this makes the package substrate useful for more than one type of integrated circuit.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: March 21, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Susan H. Downey, Sheila F. Chopin, Peter R. Harper, Sohrab Safai, Tu-Anh Tran, Alan H. Woosley
  • Patent number: 6998952
    Abstract: An inductive device (105) is formed above a substrate (225) having a conductive coil formed around a core (109). The coil comprises segments formed from a first plurality of bond wires (113) and a second plurality of bond wires (111). The first plurality of bond wires (113) extends between the core (109) and the substrate (225). Each of the first plurality of bond wires is coupled to two of a plurality of wire bond pads (117, 116). The second plurality of bond wires (111) extends over the core (109) and is coupled between two of the plurality of wire bond pads (117, 119). A shield (141) includes a portion that is positioned between the core (109) and the substrate (225).
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: February 14, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Yaping Zhou, Susan H. Downey, Sheila F. Chopin, Tu-Anh Tran, Alan H. Woosley, Peter R. Harper, Perry H. Pelley, III
  • Publication number: 20040119168
    Abstract: An integrated circuit is packaged using a package substrate that has a bottom side with a regular array of connection points and a top side with the integrated circuit on it. The package substrate also has vias that are present to provide electrical connection between the top and bottom sides. The vias have a via capture pad that is used to directly receive a wire bond. Thus, the wires from the integrated circuit to the top side directly contact the vias at their capture pads. In such a connection there is then no need for a trace from location where the wire is bonded on the top side to the via. This saves cost. Further this makes the package substrate useful for more than one type of integrated circuit.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 24, 2004
    Inventors: Susan H. Downey, Sheila F. Chopin, Peter R. Harper, Sohrab Safai, Tu-Anh Tran, Alan H. Woosley