Patents by Inventor Shen-Jie Wang
Shen-Jie Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10147845Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1-xN (0<x<1) while the stress control layer is made from AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.Type: GrantFiled: June 19, 2017Date of Patent: December 4, 2018Assignee: Genesis Photonics Inc.Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
-
Publication number: 20180277718Abstract: A patterned substrate includes a main base and a plurality of patterned structures. The main base has at least one device-disposed region and a cutting region surrounding the device-disposed region. The patterned structures are integratedly formed with the main base, and only distributed in the cutting region of the main base. The patterned structures are separated from each other.Type: ApplicationFiled: March 27, 2018Publication date: September 27, 2018Applicant: PlayNitride Inc.Inventors: Yen-Lin Lai, Shen-Jie Wang, Jyun-De Wu, Chien-Chih Yen
-
Publication number: 20180269349Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. One well layer is disposed between every two barrier layers. The barrier layer is made of AxInyGa1?x?yN (0<x<1, 0<y<1, 0<x+y<1) while the well layer is made of InzGa1?zN (0<z<1). Thereby quaternary composition is adjusted for lattice match between the barrier layers and the well layers. Thus crystal defect caused by lattice mismatch is improved.Type: ApplicationFiled: May 16, 2018Publication date: September 20, 2018Applicant: Genesis Photonics Inc.Inventors: Yen-Lin Lai, Shen-Jie Wang
-
Publication number: 20170294555Abstract: A semiconductor structure includes a first-type doped semiconductor layer, a light emitting layer, a second-type doped semiconductor layer comprising AlxInyGal-x-yN layers, at least one GaN based layer, and an ohmic contact layer. The light emitting layer is disposed on the first-type doped semiconductor layer, and the second-type doped semiconductor layer is disposed on the light emitting layer. The AlxInyGal-x-yN layers stacked on the light emitting layer, where 0<x<1, 0?y<1, and 0<x+y<1, and the GaN based layer interposed between two of the AlxInyGal-x-yN layers, and the ohmic contact layer is disposed on the AlxInyGal-x-yN layers.Type: ApplicationFiled: June 19, 2017Publication date: October 12, 2017Applicant: Genesis Photonics Inc.Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
-
Publication number: 20170288092Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1-xN (0<x<1) while the stress control layer is made from AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.Type: ApplicationFiled: June 19, 2017Publication date: October 5, 2017Applicant: Genesis Photonics Inc.Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
-
Publication number: 20170256673Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. One well layer is disposed between every two barrier layers. The barrier layer is made of AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1) while the well layer is made of InzGa1-zN (0<z<1). Thereby quaternary composition is adjusted for lattice match between the barrier layers and the well layers. Thus crystal defect caused by lattice mismatch is improved.Type: ApplicationFiled: April 28, 2017Publication date: September 7, 2017Applicant: Genesis Photonics Inc.Inventors: Yen-Lin Lai, Shen-Jie Wang
-
Patent number: 9741898Abstract: A semiconductor light emitting device including an N-type semiconductor layer, a P-type semiconductor layer, a light emitting layer and a strain relief layer is provided. The light emitting layer is disposed between the N-type semiconductor layer and the P-type semiconductor layer, and the light emitting layer is a multiple quantum well structure. The strain relief layer is disposed between the light emitting layer and the N-type semiconductor layer, and is made of InxGa1-xN, where 0<x<1. The difference between any two values of x corresponded to any two positions in the strain relief layer is greater than ?0.01 and less than 0.01. The thickness of the strain relief layer is larger than the thickness of each well layer of the multiple quantum well structure.Type: GrantFiled: June 7, 2016Date of Patent: August 22, 2017Assignee: PlayNitride Inc.Inventors: Shen-Jie Wang, Yu-Chu Li, Ching-Liang Lin
-
Publication number: 20170194529Abstract: A semiconductor light-emitting device including at least one n-type semiconductor layer, at least one p-type semiconductor layer, and a light-emitting layer is provided. The light-emitting layer is disposed between the at least one p-type semiconductor layer and the at least one n-type semiconductor layer. A ratio of carbon concentration to aluminum concentration in any one semiconductor layer containing aluminum in the semiconductor light-emitting device ranges from 10?4 to 10?2.Type: ApplicationFiled: June 6, 2016Publication date: July 6, 2017Inventors: Shen-Jie Wang, Yun-Li Li, Ching-Liang Lin
-
Patent number: 9685586Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1-xN (0<x<1) while the stress control layer is made from AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.Type: GrantFiled: June 1, 2015Date of Patent: June 20, 2017Assignee: Genesis Photonics Inc.Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
-
Publication number: 20170141262Abstract: A semiconductor light emitting device including an N-type semiconductor layer, a P-type semiconductor layer, a light emitting layer and a strain relief layer is provided. The light emitting layer is disposed between the N-type semiconductor layer and the P-type semiconductor layer, and the light emitting layer is a multiple quantum well structure. The strain relief layer is disposed between the light emitting layer and the N-type semiconductor layer, and is made of InxGa1-xN, where 0<x<1. The difference between x's at any two positions in the strain relief layer is greater than ?0.01 and less than 0.01. The thickness of the strain relief layer is larger than the thickness of each well layer of the multiple quantum well structure.Type: ApplicationFiled: June 7, 2016Publication date: May 18, 2017Inventors: Shen-Jie Wang, Yu-Chu Li, Ching-Liang Lin
-
Patent number: 9640712Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. One well layer is disposed between every two barrier layers. The barrier layer is made of AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1) while the well layer is made of InzGa1-zN (0<z<1). Thereby quaternary composition is adjusted for lattice match between the barrier layers and the well layers. Thus crystal defect caused by lattice mismatch is improved.Type: GrantFiled: June 8, 2015Date of Patent: May 2, 2017Assignee: Genesis Photonics Inc.Inventors: Yen-Lin Lai, Shen-Jie Wang
-
Patent number: 9608161Abstract: A semiconductor light-emitting device including an N-type semiconductor layer, a plurality of P-type semiconductor layers, a light-emitting layer, and a contact layer is provided. The light-emitting layer is disposed between the N-type semiconductor layer and the whole of the P-type semiconductor layers. The P-type semiconductor layers are disposed between the contact layer and the light-emitting layer. All the P-type semiconductor layers between the light-emitting layer and the contact layer include aluminum.Type: GrantFiled: November 16, 2015Date of Patent: March 28, 2017Assignee: PlayNitride Inc.Inventors: Shen-Jie Wang, Yu-Chu Li
-
Publication number: 20160181472Abstract: A semiconductor light-emitting device including an N-type semiconductor layer, a plurality of P-type semiconductor layers, a light-emitting layer, and a contact layer is provided. The light-emitting layer is disposed between the N-type semiconductor layer and the whole of the P-type semiconductor layers. The P-type semiconductor layers are disposed between the contact layer and the light-emitting layer. All the P-type semiconductor layers between the light-emitting layer and the contact layer include aluminum.Type: ApplicationFiled: November 16, 2015Publication date: June 23, 2016Inventors: Shen-Jie Wang, Yu-Chu Li
-
Publication number: 20160181475Abstract: A semiconductor light-emitting device including a first type doped semiconductor layer, a second type doped semiconductor layer, a light-emitting layer, and a contact layer is provided. The light-emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The contact layer is disposed on the second type doped semiconductor layer. The second type doped semiconductor layer is disposed between the contact layer and the light-emitting layer. Dopants in the contact layer include a group IVA element and a group IIA element. The group IVA element is an electron donor. The group IIA element is an electron acceptor. The doping concentration of the group IVA element is greater than or equal to 1020 atoms/cm3, and the doping concentration of the group IIA element is greater than or equal to 1020 atoms/cm3.Type: ApplicationFiled: November 16, 2015Publication date: June 23, 2016Inventors: Shen-Jie Wang, Yu-Chu Li
-
Publication number: 20160181469Abstract: A semiconductor light-emitting device including a first N-type semiconductor layer, a P-type semiconductor layer, and a light-emitting layer is provided. The first N-type semiconductor layer contains aluminum, and the concentration of the N-type dopant thereof is greater than or equal to 5×1018 atoms/cm3. The light-emitting layer is disposed between the first N-type semiconductor layer and the P-type semiconductor layer. A manufacturing method of a semiconductor light-emitting device is also provided.Type: ApplicationFiled: November 16, 2015Publication date: June 23, 2016Inventors: Shen-Jie Wang, Yu-Chu Li, Ching-Liang Lin
-
Publication number: 20150270433Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. One well layer is disposed between every two barrier layers. The barrier layer is made of AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1) while the well layer is made of InzGa1-zN (0<z<1). Thereby quaternary composition is adjusted for lattice match between the barrier layers and the well layers. Thus crystal defect caused by lattice mismatch is improved.Type: ApplicationFiled: June 8, 2015Publication date: September 24, 2015Inventors: Yen-Lin Lai, Shen-Jie Wang
-
Publication number: 20150263226Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1-xN (0<x<1) while the stress control layer is made from AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.Type: ApplicationFiled: June 1, 2015Publication date: September 17, 2015Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
-
Patent number: 9076912Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. One well layer is disposed between every two barrier layers. The barrier layer is made of AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1) while the well layer is made of InzGa1-zN (0<z<1). Thereby quaternary composition is adjusted for lattice match between the barrier layers and the well layers. Thus crystal defect caused by lattice mismatch is improved.Type: GrantFiled: August 9, 2013Date of Patent: July 7, 2015Assignee: Genesis Photonics Inc.Inventors: Yen-Lin Lai, Shen-Jie Wang
-
Patent number: 9048364Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1?xN (0<x<1) while the stress control layer is made from AlxInyGa1?x?yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.Type: GrantFiled: August 9, 2013Date of Patent: June 2, 2015Assignee: Genesis Photonics Inc.Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
-
Publication number: 20150048396Abstract: A light emitting structure includes an N-type semiconductor layer, a P-type semiconductor layer, a light emitting layer, and a stress regulation layer. The light emitting layer is formed between the N-type semiconductor layer and the P-type semiconductor layer. The stress regulation layer is formed between the N-type semiconductor layer and the light emitting layer. The stress regulation layer comprises a plurality of pairs of AlxIn(1-x)GaN and AlyIn(1-y)GaN layers stacked with each other, wherein 0<x<1, 0?y<1, thickness of the stress regulation layer is between 50 nanometer and 500 nanometer, and x?y.Type: ApplicationFiled: August 14, 2014Publication date: February 19, 2015Inventors: Jyun-De Wu, Shen-Jie Wang