Patents by Inventor Sheng-Chau Chen

Sheng-Chau Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170358620
    Abstract: A complementary metal-oxide-semiconductor (CMOS) image sensor having a passivation layer is provided. The CMOS image sensor includes a sensing device substrate. Isolation structures are positioned within trenches of the sensing device substrate. The isolation structures are arranged along opposing sides of a plurality of image sensing devices. The CMOS image sensor also includes a passivation layer. The passivation layer includes passivation sidewalls arranged along the sidewalls of the isolation structures. A metallic grid overlies the passivation layer. The metallic grid includes a metal framework surrounding openings overlying the plurality of image sensing devices. The passivation layer further includes passivation section underlying the openings.
    Type: Application
    Filed: June 13, 2016
    Publication date: December 14, 2017
    Inventors: Sheng-Chau Chen, Cheng-Hsien Chou, Cheng-Yuan Tsai, Sheng-Chan Li, Zhi-Yang Wang
  • Patent number: 9842816
    Abstract: A representative device includes a patterned opening through a layer at a surface of a device die. A liner is disposed on sidewalls of the opening and the device die is patterned to extend the opening further into the device die. After patterning, the liner is removed. A conductive pad is formed in the device die by filling the opening with a conductive material.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: December 12, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chau Chen, Shih Pei Chou, Yen-Chang Chu, Cheng-Hsien Chou, Chih-Hui Huang, Yeur-Luen Tu
  • Patent number: 9837291
    Abstract: An apparatus for and a method of bonding a first substrate and a second substrate are provided. In an embodiment a first wafer chuck has a first curved surface and a second wafer chuck has a second curved surface. A first wafer is placed on the first wafer chuck and a second wafer is placed on a second wafer chuck, such that both the first wafer and the second wafer are pre-warped prior to bonding. Once the first wafer and the second wafer have been pre-warped, the first wafer and the second wafer are bonded together.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: December 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hui Huang, Chun-Han Tsao, Sheng-Chau Chen, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20170309603
    Abstract: Methods for improving hybrid bond yield for semiconductor wafers forming 3DIC devices includes first and second wafers having dummy and main metal deposited and patterned during BEOL processing. Metal of the dummy metal pattern occupies from about 40% to about 90% of the surface area of any given dummy metal pattern region. High dummy metal surface coverage, in conjunction with utilization of slotted conductive pads, allows for improved planarization of wafer surfaces presented for hybrid bonding. Planarized wafers exhibit minimum topographic differentials corresponding to step height differences of less than about 400 ?. Planarized first and second wafers are aligned and subsequently hybrid bonded with application of heat and pressure; dielectric-to-dielectric, RDL-to-RDL. Lithography controls to realize WEE from about 0.5 mm to about 1.5 mm may be employed to promote topographic uniformity at wafer edges.
    Type: Application
    Filed: May 17, 2017
    Publication date: October 26, 2017
    Inventors: Ju-Shi Chen, Cheng-Ying Ho, Chun-Chieh Chuang, Sheng-Chau Chen, Shih Pei Chou, Hui-Wen Shen, Dun-Nian Yaung, Ching-Chun Wang, Feng-Chi Hung, Shyh-Fann Ting
  • Patent number: 9786619
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure comprises a semiconductive substrate and an interconnect structure over the semiconductive substrate. The semiconductor structure also comprises a bond pad in the semiconductive substrate and coupled to the metal layer. The bond pad comprises two conductive layers.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: October 10, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chau Chen, Shih-Pei Chou, Ming-Jhe Lee, Kuo-Ming Wu, Cheng-Hsien Chou, Cheng-Yuan Tsai, Yeur-Luen Tu
  • Publication number: 20170287878
    Abstract: In some embodiments, the present disclosure relates to a multi-dimensional integrated chip having a redistribution structure vertically extending between integrated chip die at a location laterally offset from a bond pad. The integrated chip structure has a first die and a second die. The first die has a first plurality of interconnect layers arranged within a first dielectric structure disposed on a first substrate. The second die has a second plurality of interconnect layers arranged within a second dielectric structure disposed between the first dielectric structure and a second substrate. A bond pad is disposed within a recess extending through the second substrate. A redistribution structure electrically couples the first die to the second die at a position that is laterally offset from the bond pad.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 5, 2017
    Inventors: Sin-Yao Huang, Chun-Chieh Chuang, Ching-Chun Wang, Sheng-Chau Chen, Dun-Nian Yaung, Feng-Chi Hung, Yung-Lung Lin
  • Publication number: 20170250160
    Abstract: A structure and a method of forming are provided. The structure includes a first dielectric layer overlying a first substrate. A first connection pad is disposed in a top surface of the first dielectric layer and contacts a first redistribution line. A first dummy pad is disposed in the top surface of the first dielectric layer, the first dummy pad contacting the first redistribution line. A second dielectric layer overlies a second substrate. A second connection pad and a second dummy pad are disposed in the top surface of the second dielectric layer, the second connection pad bonded to the first connection pad, and the first dummy pad positioned in a manner that is offset from the second dummy pad so that the first dummy pad and the second dummy pad do not contact each other.
    Type: Application
    Filed: February 26, 2016
    Publication date: August 31, 2017
    Inventors: Kuo-Ming Wu, Yung-Lung Lin, Zhi-Yang Wang, Sheng-Chau Chen, Cheng-Hsien Chou
  • Publication number: 20170243915
    Abstract: Some embodiments of the present disclosure relate to a method in which a functional layer is formed over an upper semiconductor surface of a semiconductor substrate, and a capping layer is formed over the functional layer. A first etchant is used to form a recess through the capping layer and through the functional layer. The recess has a first depth and exposes a portion of the semiconductor substrate there through. A protective layer is formed along a lower surface and inner sidewalls of the recess. A second etchant is used to remove the protective layer from the lower surface of the recess and to extend the recess below the upper semiconductor surface to a second depth to form a deep trench. To prevent etching of the functional layer, the protective layer remains in place along the inner sidewalls of the recess while the second etchant is used.
    Type: Application
    Filed: May 10, 2017
    Publication date: August 24, 2017
    Inventors: Cheng-Hsien Chou, Shih Pei Chou, Chih-Yu Lai, Sheng-Chau Chen, Chih-Ta Chen, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20170207176
    Abstract: A method of fabrication of alignment marks for a non-STI CMOS image sensor is introduced. In some embodiments, zero layer alignment marks and active are alignment marks may be simultaneously formed on a wafer. A substrate of the wafer may be patterned to form one or more recesses in the substrate. The recesses may be filled with a dielectric material using, for example, a field oxidation method and/or suitable deposition methods. Structures formed by the above process may correspond to elements of the zero layer alignment marks and/or to elements the active area alignment marks.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Inventors: Cheng-Hsien Chou, Sheng-Chau Chen, Chun-Wei Chang, Kai-Chun Hsu, Chih-Yu Lai, Wei-Cheng Hsu, Hsiao-Hui Tseng, Shih Pei Chou, Shyh-Fann Ting, Tzu-Hsuan Hsu, Ching-Chun Wang, Yeur-Luen Tu, Dun-Nian Yaung
  • Patent number: 9704827
    Abstract: The present disclosure relates to a multi-dimensional integrated chip having a redistribution layer vertically extending between integrated chip die, which is laterally offset from a back-side bond pad. The multi-dimensional integrated chip has a first integrated chip die with a first plurality of metal interconnect layers disposed within a first inter-level dielectric layer arranged onto a front-side of a first semiconductor substrate. The multi-dimensional integrated chip also has a second integrated chip die with a second plurality of metal interconnect layers disposed within a second inter-level dielectric layer abutting the first ILD layer. A bond pad is disposed within a recess extending through the second semiconductor substrate. A redistribution layer vertically extends between the first plurality of metal interconnect layers and the second plurality of metal interconnect layers at a position that is laterally offset from the bond pad.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: July 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sin-Yao Huang, Chun-Chieh Chuang, Ching-Chun Wang, Sheng-Chau Chen, Dun-Nian Yaung, Feng-Chi Hung, Yung-Lung Lin
  • Publication number: 20170194273
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure comprises a semiconductive substrate and an interconnect structure over the semiconductive substrate. The semiconductor structure also comprises a bond pad in the semiconductive substrate and coupled to the metal layer. The bond pad comprises two conductive layers.
    Type: Application
    Filed: May 17, 2016
    Publication date: July 6, 2017
    Inventors: SHENG-CHAU CHEN, SHIH-PEI CHOU, MING-JHE LEE, KUO-MING WU, CHENG-HSIEN CHOU, CHENG-YUAN TSAI, YEUR-LUEN TU
  • Patent number: 9666566
    Abstract: Methods for improving hybrid bond yield for semiconductor wafers forming 3DIC devices includes first and second wafers having dummy and main metal deposited and patterned during BEOL processing. Metal of the dummy metal pattern occupies from about 40% to about 90% of the surface area of any given dummy metal pattern region. High dummy metal surface coverage, in conjunction with utilization of slotted conductive pads, allows for improved planarization of wafer surfaces presented for hybrid bonding. Planarized wafers exhibit minimum topographic differentials corresponding to step height differences of less than about 400 ?. Planarized first and second wafers are aligned and subsequently hybrid bonded with application of heat and pressure; dielectric-to-dielectric, RDL-to-RDL. Lithography controls to realize WEE from about 0.5 mm to about 1.5 mm may also be employed to promote topographic uniformity at wafer edges.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: May 30, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ju-Shi Chen, Cheng-Ying Ho, Chun-Chieh Chuang, Sheng-Chau Chen, Shih Pei Chou, Hui-Wen Shen, Dun-Nian Yaung, Ching-Chun Wang, Feng-Chi Hung, Shyh-Fann Ting
  • Patent number: 9653507
    Abstract: Some embodiments of the present disclosure relate to a deep trench isolation (DTI) structure configured to enhance efficiency and performance of a photovoltaic device. The photovoltaic device comprises a functional layer disposed over an upper surface of a semiconductor substrate, and a pair of pixels formed within the semiconductor substrate, which are separated by the DTI structure. The DTI structure is arranged within a deep trench. Sidewalls of the deep trench are partially covered with a protective sleeve formed along the functional layer prior to etching the deep trench. The protective sleeve prevents etching of the functional layer while etching the deep trench, which prevents contaminants from penetrating the pair of pixels. The protective sleeve also narrows the width of the DTI structure, which increases pixel area and subsequently the efficiency and performance of the photovoltaic device.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: May 16, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hsien Chou, Shih Pei Chou, Chih-Yu Lai, Sheng-Chau Chen, Chih-Ta Chen, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 9627326
    Abstract: A method of fabrication of alignment marks for a non-STI CMOS image sensor is introduced. In some embodiments, zero layer alignment marks and active are alignment marks may be simultaneously formed on a wafer. A substrate of the wafer may be patterned to form one or more recesses in the substrate. The recesses may be filled with a dielectric material using, for example, a field oxidation method and/or suitable deposition methods. Structures formed by the above process may correspond to elements of the zero layer alignment marks and/or to elements the active area alignment marks.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: April 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hsien Chou, Sheng-Chau Chen, Chun-Wei Chang, Kai-Chun Hsu, Chih-Yu Lai, Wei-Cheng Hsu, Hsiao-Hui Tseng, Shih Pei Chou, Shyh-Fann Ting, Tzu-Hsuan Hsu, Ching-Chun Wang, Yeur-Luen Tu, Dun-Nian Yaung
  • Publication number: 20160379960
    Abstract: The present disclosure relates to a multi-dimensional integrated chip having a redistribution layer vertically extending between integrated chip die, which is laterally offset from a back-side bond pad. The multi-dimensional integrated chip has a first integrated chip die with a first plurality of metal interconnect layers disposed within a first inter-level dielectric layer arranged onto a front-side of a first semiconductor substrate. The multi-dimensional integrated chip also has a second integrated chip die with a second plurality of metal interconnect layers disposed within a second inter-level dielectric layer abutting the first ILD layer. A bond pad is disposed within a recess extending through the second semiconductor substrate. A redistribution layer vertically extends between the first plurality of metal interconnect layers and the second plurality of metal interconnect layers at a position that is laterally offset from the bond pad.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 29, 2016
    Inventors: Sin-Yao Huang, Chun-Chieh Chuang, Ching-Chun Wang, Sheng-Chau Chen, Dun-Nian Yaung, Feng-Chi Hung, Yung-Lung Lin
  • Publication number: 20160343679
    Abstract: A representative device includes a patterned opening through a layer at a surface of a device die. A liner is disposed on sidewalls of the opening and the device die is patterned to extend the opening further into the device die. After patterning, the liner is removed. A conductive pad is formed in the device die by filling the opening with a conductive material.
    Type: Application
    Filed: August 4, 2016
    Publication date: November 24, 2016
    Inventors: Sheng-Chau Chen, Shih Pei Chou, Yen-Chang Chu, Cheng-Hsien Chou, Chih-Hui Huang, Yeur-Luen Tu
  • Publication number: 20160276285
    Abstract: A method of fabrication of alignment marks for a non-STI CMOS image sensor is introduced. In some embodiments, zero layer alignment marks and active are alignment marks may be simultaneously formed on a wafer. A substrate of the wafer may be patterned to form one or more recesses in the substrate. The recesses may be filled with a dielectric material using, for example, a field oxidation method and/or suitable deposition methods. Structures formed by the above process may correspond to elements of the zero layer alignment marks and/or to elements the active area alignment marks.
    Type: Application
    Filed: May 26, 2016
    Publication date: September 22, 2016
    Inventors: Cheng-Hsien Chou, Sheng-Chau Chen, Chun-Wei Chang, Kai-Chun Hsu, Chih-Yu Lai, Wei-Cheng Hsu, Hsiao-Hui Tseng, Shih Pei Chou, Shyh-Fann Ting, Tzu-Hsuan Hsu, Ching-Chun Wang, Yeur-Luen Tu, Dun-Nian Yaung
  • Patent number: 9437572
    Abstract: A method embodiment includes patterning an opening through a layer at a surface of a device die. The method further includes forming a liner on sidewalls of the opening, patterning the device die to extend the opening further into the device die. After patterning the device die, the liner is removed. A conductive pad is formed in the device die by filling the opening with a conductive material.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: September 6, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chau Chen, Shih Pei Chou, Yen-Chang Chu, Cheng-Hsien Chou, Chih-Hui Huang, Yeur-Luen Tu
  • Patent number: 9355964
    Abstract: A method of fabrication of alignment marks for a non-STI CMOS image sensor is introduced. In some embodiments, zero layer alignment marks and active are alignment marks may be simultaneously formed on a wafer. A substrate of the wafer may be patterned to form one or more recesses in the substrate. The recesses may be filled with a dielectric material using, for example, a field oxidation method and/or suitable deposition methods. Structures formed by the above process may correspond to elements of the zero layer alignment marks and/or to elements the active area alignment marks.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: May 31, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hsien Chou, Sheng-Chau Chen, Chun-Wei Chang, Kai-Chun Hsu, Chih-Yu Lai, Wei-Cheng Hsu, Hsiao-Hui Tseng, Shih Pei Chou, Shyh-Fann Ting, Tzu-Hsuan Hsu, Ching-Chun Wang, Yeur-Luen Tu, Dun-Nian Yaung
  • Patent number: 9281331
    Abstract: A vertical-gate transfer transistor of an active pixel sensor (APS) is provided. The transistor includes a semiconductor substrate, a vertical trench extending into the semiconductor substrate, a dielectric lining the vertical trench, and a vertical gate filling the lined vertical trench. The dielectric includes a dielectric constant exceeding 3.9 (i.e., the dielectric constant of silicon dioxide). A method of manufacturing the vertical-gate transfer transistor, an APS including the vertical-gate transfer transistor, a method of manufacturing the APS, and an image sensor including a plurality of the APSs are also provided.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: March 8, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Chau Chen, Chih-Yu Lai, Kuo-Ming Wu, Kuo-Hwa Tzeng, Cheng-Hsien Chou, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai