Patents by Inventor Sheng-De Liu

Sheng-De Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9263569
    Abstract: Embodiments of the present disclosure include a method for forming a semiconductor device, a method for forming a MISFET device, and a MISFET device. An embodiment is a method for forming a semiconductor device, the method including forming a source/drain over a substrate, forming a first etch stop layer on the source/drain, and forming a gate dielectric layer on the first etch stop layer and along the substrate. The method further includes forming a gate electrode on the gate dielectric layer, forming a second etch stop layer on the gate electrode, and removing the gate dielectric layer from over the source/drain.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: February 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-De Liu, Ming-Chyi Liu, Chung-Yen Chou, Chia-Shiung Tsai
  • Publication number: 20160005642
    Abstract: Among other things, one or more semiconductor arrangements comprising isolation trenches, and techniques for forming such isolation trenches are provided. A substrate comprises a front side surface and a backside surface. One or more devices are formed over the front side surface. A wet etch is performed to form a tapered portion of an isolation trench. A dry etch is performed to form a non-tapered portion of the isolation trench. Because both the wet etch and the dry etch are performed, etching time is reduced compared to merely using the dry etch due to the wet etch having a relatively faster etch rate than the dry etch. In an embodiment, the isolation trench provides isolation for a current leakage path associated with a device or other material formed over the front side surface. In an embodiment, metal is formed within the isolation trench for backside metallization.
    Type: Application
    Filed: September 11, 2015
    Publication date: January 7, 2016
    Inventors: Ming Chyi Liu, Sheng-de Liu, Chi-Ming Chen, Che-Ming Chang, Chung-Yen Chou, Chia-Shiung Tsai
  • Patent number: 9142614
    Abstract: Among other things, one or more semiconductor arrangements comprising isolation trenches, and techniques for forming such isolation trenches are provided. A substrate comprises a front side surface and a backside surface. One or more devices are formed over the front side surface. A wet etch is performed to form a tapered portion of an isolation trench. A dry etch is performed to form a non-tapered portion of the isolation trench. Because both the wet etch and the dry etch are performed, etching time is reduced compared to merely using the dry etch due to the wet etch having a relatively faster etch rate than the dry etch. In an embodiment, the isolation trench provides isolation for a current leakage path associated with a device or other material formed over the front side surface. In an embodiment, metal is formed within the isolation trench for backside metallization.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: September 22, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ming Chyi Liu, Sheng-de Liu, Chi-Ming Chen, Che-Ming Chang, Chung-Yen Chou, Chia-Shiung Tsa
  • Publication number: 20150035021
    Abstract: Embodiments of the present disclosure include a method for forming a semiconductor device, a method for forming a MISFET device, and a MISFET device. An embodiment is a method for forming a semiconductor device, the method including forming a source/drain over a substrate, forming a first etch stop layer on the source/drain, and forming a gate dielectric layer on the first etch stop layer and along the substrate. The method further includes forming a gate electrode on the gate dielectric layer, forming a second etch stop layer on the gate electrode, and removing the gate dielectric layer from over the source/drain.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-De Liu, Ming-Chyi Liu, Chung-Yen Chou, Chia-Shiung Tsai
  • Publication number: 20150031176
    Abstract: A semiconductor structure with a MISFET and a HEMT region includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A third III-V compound layer is disposed on the second III-V compound layer is different from the second III-V compound layer in composition. A source feature and a drain feature are disposed in each of the MISFET and HEMT regions on the third III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A gate dielectric layer is disposed under the gate electrode in the MISFET region but above the top surface of the third III-V compound layer.
    Type: Application
    Filed: October 15, 2014
    Publication date: January 29, 2015
    Inventors: Chung-Yen Chou, Sheng-De Liu, Fu-Chih Yang, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20150008556
    Abstract: Among other things, one or more semiconductor arrangements comprising isolation trenches, and techniques for forming such isolation trenches are provided. A substrate comprises a front side surface and a backside surface. One or more devices are formed over the front side surface. A wet etch is performed to form a tapered portion of an isolation trench. A dry etch is performed to form a non-tapered portion of the isolation trench. Because both the wet etch and the dry etch are performed, etching time is reduced compared to merely using the dry etch due to the wet etch having a relatively faster etch rate than the dry etch. In an embodiment, the isolation trench provides isolation for a current leakage path associated with a device or other material formed over the front side surface. In an embodiment, metal is formed within the isolation trench for backside metallization.
    Type: Application
    Filed: July 5, 2013
    Publication date: January 8, 2015
    Inventors: Ming Chyi Liu, Sheng-de Liu, Chi-Ming Chen, Che-Ming Chang, Chung-Yen Chou, Chia-Shiung Tsa
  • Patent number: 8928120
    Abstract: Among other things, one or more wafer edge protection structures and techniques for forming such wafer edge protection structures are provided. A substrate of a semiconductor wafer comprises an edge, such as a beveled wafer edge portion, that is susceptible to Epi growth which results in undesirable particle contamination of the semiconductor wafer. Accordingly, a wafer edge protection structure is formed over the beveled wafer edge portion. The wafer edge protection structure comprises an Epi growth resistant material, such as an amorphous material, a non-crystalline material, oxide, or other material. In this way, the wafer edge protection structure mitigates Epi growth on the beveled wafer edge portion, where the Epi growth increases a likelihood of particle contamination from cracking or peeling of an Epi film resulting from the Epi growth. The wafer edge protection structure thus mitigates at least some contamination of the wafer.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ming Chyi Liu, Sheng-de Liu, Chi-Ming Chen, Yuan-Tai Tseng, Chung-Yen Chou, Chia-Shiung Tsai
  • Publication number: 20150001682
    Abstract: Among other things, one or more wafer edge protection structures and techniques for forming such wafer edge protection structures are provided. A substrate of a semiconductor wafer comprises an edge, such as a beveled wafer edge portion, that is susceptible to Epi growth which results in undesirable particle contamination of the semiconductor wafer. Accordingly, a wafer edge protection structure is formed over the beveled wafer edge portion. The wafer edge protection structure comprises an Epi growth resistant material, such as an amorphous material, a non-crystalline material, oxide, or other material. In this way, the wafer edge protection structure mitigates Epi growth on the beveled wafer edge portion, where the Epi growth increases a likelihood of particle contamination from cracking or peeling of an Epi film resulting from the Epi growth. The wafer edge protection structure thus mitigates at least some contamination of the wafer.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Ming Chyi Liu, Sheng-de Liu, Chi-Ming Chen, Yuan-Tai Tseng, Chung-Yen Chou, Chia-Shiung Tsai
  • Patent number: 8912573
    Abstract: A semiconductor structure with a MISFET and a HEMT region includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A third III-V compound layer is disposed on the second III-V compound layer is different from the second III-V compound layer in composition. A source feature and a drain feature are disposed in each of the MISFET and HEMT regions on the third III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A gate dielectric layer is disposed under the gate electrode in the MISFET region but above the top surface of the third III-V compound layer.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: December 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Yen Chou, Sheng-De Liu, Fu-Chih Yang, Shih-Chang Liu, Chia-Shiung Tsai