Patents by Inventor Sheng Liang

Sheng Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153943
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device comprises a source region and a drain region in a substrate and laterally spaced. A gate stack is over the substrate and between the source region and the drain region. The drain region includes two or more first doped regions having a first doping type in the substrate. The drain region further includes one or more second doped regions in the substrate. The first doped regions have a greater concentration of first doping type dopants than the second doped regions, and each of the second doped regions is disposed laterally between two neighboring first doped regions.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 9, 2024
    Inventors: Sheng-Fu Hsu, Ta-Yuan Kung, Chen-Liang Chu, Chih-Chung Tsai
  • Patent number: 11977756
    Abstract: A computer device, a setting method for a memory module, and a mainboard are provided. The computer device includes a memory module, a processor, and the mainboard. A basic input output system (BIOS) of the mainboard stores a custom extreme memory profile (XMP). When the processor executes the BIOS, so that the computer device displays a user interface (UI), the BIOS displays multiple default XMPs stored in the memory module and the custom XMP through the UI. The BIOS stores one of the default XMPs and the custom XMP to the memory module according to a selecting result of the one of the default XMPs and the custom XMP displayed on the UI.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: May 7, 2024
    Assignee: GIGA-BYTE TECHNOLOGY CO., LTD.
    Inventors: Chia-Chih Chien, Sheng-Liang Kao, Chen-Shun Chen, Chieh-Fu Chung, Hua-Yi Wu
  • Publication number: 20240147685
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a first source/drain (S/D) epitaxial feature disposed over a substrate, a second S/D epitaxial feature adjacent the first S/D epitaxial feature, and a hybrid fin disposed between the first and second S/D epitaxial features. The hybrid fin includes a first dielectric material, a second dielectric material disposed on the first dielectric material, a dielectric layer surrounding the first and second dielectric materials, and a high-k dielectric layer disposed in the first and second dielectric materials. The high-k dielectric layer has an upper surface located at a level between a level of an upper surface of the second dielectric material and a level of a lower surface of the second dielectric material.
    Type: Application
    Filed: January 19, 2023
    Publication date: May 2, 2024
    Inventors: Wen-Li Chiu, Chun-Sheng Liang
  • Publication number: 20240145555
    Abstract: Semiconductor structures and processes are provided. A semiconductor structure of the present disclosure includes a first base portion and a second base portion extending lengthwise along a first direction, a first source/drain feature disposed over the first base portion, a second source/drain feature disposed over the second base portion, a center dielectric fin sandwiched between the first source/drain feature and the second source/drain feature along a second direction perpendicular to the first direction, and a source/drain contact disposed over the first source/drain feature, the second source/drain feature and the center dielectric fin. A portion of the source/drain contact extends between the first source/drain feature and the second source/drain feature along the second direction.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 2, 2024
    Inventors: Ming-Heng Tsai, Chih-Hao Chang, Chun-Sheng Liang, Ta-Chun Lin
  • Publication number: 20240139990
    Abstract: An internal rotor type nail drive device of electric nail gun, comprising a nailing rod and an internal rotor type rotary actuator that can output a specific rotation angle and can drive the nailing rod to move downward for nailing. Specifically, the rotary actuator comprises a stator and a rotor arranged inside the stator, even groups of electromagnetic mutual action components are configured in pairs between the stator and the rotor, to generate a tangential force to drive the rotor to rotate for a specific rotation angle, and to drive the nailing rod to move for a nailing stroke. The nailing stroke can be determined by a specific rotation angle. Thus, through the above configuration of the rotary actuator, the structure of the electric nail gun can be simplified, and the kinetic energy for nailing can be increased.
    Type: Application
    Filed: August 22, 2023
    Publication date: May 2, 2024
    Inventors: I-TSUNG WU, CHIA-SHENG LIANG, YU-CHE LIN, WEN-CHIN CHEN
  • Patent number: 11973133
    Abstract: A method for fabricating a semiconductor device includes the steps of providing a substrate having a high electron mobility transistor (HEMT) region and a capacitor region, forming a first mesa isolation on the HEMT region and a second mesa isolation on the capacitor region, forming a HEMT on the first mesa isolation, and then forming a capacitor on the second mesa isolation.
    Type: Grant
    Filed: May 8, 2023
    Date of Patent: April 30, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Chien-Liang Wu, Kuo-Yu Liao
  • Publication number: 20240136251
    Abstract: A semiconductor device includes a package and a cooling cover. The package includes a first die having an active surface and a rear surface opposite to the active surface. The rear surface has a cooling region and a peripheral region enclosing the cooling region. The first die includes micro-trenches located in the cooling region of the rear surface. The cooling cover is stacked on the first die. The cooling cover includes a fluid inlet port and a fluid outlet port located over the cooling region and communicated with the micro-trenches.
    Type: Application
    Filed: January 4, 2024
    Publication date: April 25, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Jung Wu, Chih-Hang Tung, Tung-Liang Shao, Sheng-Tsung Hsiao, Jen-Yu Wang
  • Publication number: 20240128267
    Abstract: A semiconductor device includes a first semiconductor structure, a second semiconductor structure, a first isolation block and a second isolation block. The first semiconductor structure includes a first gate structure wrapping around a first sheet structures and a second sheet structures, and a first dielectric wall disposed between and separating the first and second sheet structures. The second semiconductor structure includes a second gate structure wrapping around third sheet structures. The first isolation block is disposed on the first dielectric wall of the first semiconductor structure and separates the first gate structure into a first gate portion wrapping around the first sheet structures and a second gate portion wrapping around the second sheet structures. The second isolation block is disposed between the first and second semiconductor structures and separates the first gate structure from the second gate structure.
    Type: Application
    Filed: January 30, 2023
    Publication date: April 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Sheng Liang, Yu-San Chien, Pin Chun Shen, Wen-Chiang Hong, Chun-Wing Yeung
  • Publication number: 20240128980
    Abstract: Disclosure regards a signal conversion device and method and an analog-to-digital converter, including a channel module including a plurality of sampling channels, wherein each of the plurality of sampling channels is configured to receive an analog signal; a timing-control module configured to provide a plurality of candidate sequences including a first sequence and a second sequence for the same sampling channel, wherein the timing-control module sets a first sampling time corresponding to the first sequence and a second sampling time corresponding to the second sequence; a conversion module electrically coupled to the timing-control module and the channel module, wherein the conversion module is configured to convert the analog signal from the same sampling channel into a digital signal in response to an order and sampling times defined by the candidate sequences. Therefore, problems of poor sampling accuracy and flexibility in the current sampling technologies are effectively solved.
    Type: Application
    Filed: March 19, 2023
    Publication date: April 18, 2024
    Applicant: GIGADEVICE SEMICONDUCTOR INC.
    Inventor: Sheng Liang
  • Patent number: 11961423
    Abstract: An electronic shelf label positioning system, an electronic shelf label and a guide rail. The electronic shelf label positioning system includes the electronic shelf label, the guide rail, a PDA and a background server. The electronic shelf label includes a main control SoC, a card reader IC, a screen and a power supply device. The main control SoC is configured to control the screen display and to communicate with an AP. The power supply device is configured to supply power to the electronic shelf label. The guide rail includes a guide rail identification area and a label area. The label area is installed with a plurality of wireless labels each having a unique non-repeated ID number. The guide rail identification area is installed with an identity recognition device, which includes a guide rail ID consisting of the ID numbers of the wireless labels sequentially arranged and summarized.
    Type: Grant
    Filed: May 9, 2023
    Date of Patent: April 16, 2024
    Assignee: HANSHOW TECHNOLOGY CO., LTD.
    Inventors: Shiguo Hou, Jianguo Zhao, Min Liang, Le Zhuo, Sheng Yi, Yang Zhao, Yanwei Wang, Linjiang Wang
  • Publication number: 20240120388
    Abstract: Provided are structures and methods for forming structures with sloping surfaces of a desired profile. An exemplary method includes performing a first etch process to differentially etch a gate material to a recessed surface, wherein the recessed surface includes a first horn at a first edge, a second horn at a second edge, and a valley located between the first horn and the second horn; depositing an etch-retarding layer over the recessed surface, wherein the etch-retarding layer has a central region over the valley and has edge regions over the horns, and wherein the central region of the etch-retarding layer is thicker than the edge regions of the etch-retarding layer; and performing a second etch process to recess the horns to establish the gate material with a desired profile.
    Type: Application
    Filed: January 18, 2023
    Publication date: April 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wei Yin, Tzu-Wen Pan, Yu-Hsien Lin, Jih-Sheng Yang, Shih-Chieh Chao, Chia Ming Liang, Yih-Ann Lin, Ryan Chia-Jen Chen
  • Publication number: 20240120337
    Abstract: A semiconductor device structure includes a first dielectric wall, a plurality of first semiconductor layers vertically stacked and extending outwardly from a first side of the first dielectric wall, each first semiconductor layer has a first width, a plurality of second semiconductor layers vertically stacked and extending outwardly from a second side of the first dielectric wall, each second semiconductor layer has a second width, a plurality of third semiconductor layers disposed adjacent the second side of the first dielectric wall, each third semiconductor layer has a third width greater than the second width, a first gate electrode layer surrounding at least three surfaces of each of the first semiconductor layers, the first gate electrode layer having a first conductivity type, and a second gate electrode layer surrounding at least three surfaces of each of the second semiconductor layers, the second gate electrode layer having a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: January 15, 2023
    Publication date: April 11, 2024
    Inventors: Ta-Chun LIN, Chih-Hung HSIEH, Chun-Sheng LIANG, Wen-Chiang HONG, Chun-Wing YEUNG, Kuo-Hua PAN, Chih-Hao CHANG, Jhon Jhy LIAW
  • Patent number: 11955405
    Abstract: A semiconductor package includes a package substrate; semiconductor devices disposed on the package substrate; a package ring disposed on a perimeter of the package substrate surrounding the semiconductor devices; a cover including silicon bonded to the package ring and covering the semiconductor devices; and a thermal interface structure (TIS) thermally connecting the semiconductor devices to the cover.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Jen Yu Wang, Chung-Jung Wu, Sheng-Tsung Hsiao, Tung-Liang Shao, Chih-Hang Tung, Chen-Hua Yu
  • Publication number: 20240113703
    Abstract: An ORing FET control circuit and method are provided. The circuit includes an ORing FET, a comparator, first, second and third resistors, a first capacitor, a diode and a driving unit. The positive and negative input terminals of the comparator are electrically connected to the input and output voltages. The first resistor, the second resistor, the first capacitor, and the third resistor are electrically connected in series between a reference voltage and a ground terminal sequentially. The reference voltage is lower than a voltage at the positive input terminal. When the input voltage is lower than the output voltage, if a voltage across the ORing FET is larger than a threshold, the comparator outputs a driving signal at low level, and correspondingly the driving unit turns off the ORing FET. The threshold depends on resistances of the first and second resistors.
    Type: Application
    Filed: September 21, 2023
    Publication date: April 4, 2024
    Inventors: Yung-Sheng Yeh, Chih-Wei Liang
  • Publication number: 20240113165
    Abstract: A semiconductor device includes a substrate, a first stack of semiconductor nanosheets, a second stack of semiconductor nanosheets, a gate structure and a first dielectric wall. The substrate includes a first fin and a second fin. The first stack of semiconductor nanosheets is disposed on the first fin. The second stack of semiconductor nanosheets is disposed on the second fin. The gate structure wraps the first stack of semiconductor nanosheets and the second stack of semiconductor nanosheets. The first dielectric wall is disposed between the first stack of semiconductor nanosheets and the second stack of semiconductor nanosheets. The first dielectric wall includes at least one neck portion between adjacent two semiconductor nanosheets of the first stack.
    Type: Application
    Filed: January 10, 2023
    Publication date: April 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chun LIN, Chun-Sheng Liang, Chih-Hao Chang, Jhon Jhy Liaw
  • Publication number: 20240113617
    Abstract: A totem-pole PFC circuit and a control method thereof are provided. The circuit includes an AC power source, first and second bridge arms and a controller. The first bridge arm includes first and second switches electrically connected in series with a connection node electrically connected to a first terminal of the AC power source. The second bridge arm includes third and fourth switches electrically connected in series with a connection node electrically connected to a second terminal of the AC power source. When a potential at the first terminal is higher than a potential at the second terminal, the controller turns off the fourth switch if the L-phase voltage is lower than a first threshold voltage. When the potential at the first terminal is lower than the potential at the second terminal, the controller turns off the third switch if the L-phase voltage is higher than a second threshold voltage.
    Type: Application
    Filed: September 22, 2023
    Publication date: April 4, 2024
    Inventors: Yung-Sheng Yeh, Chih-Wei Liang
  • Publication number: 20240105805
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes channel structures vertically stacked over a substrate and a source/drain structure laterally attached to the channel structures in the first direction. The semiconductor structure also includes a dielectric wall structure laterally attached to the channel structures in the second direction. The second direction is different from the first direction. In addition, the dielectric wall structure includes a bottom portion and a cap layer formed over the bottom portion. The semiconductor structure also includes an isolation feature vertically overlapping the cap layer of the dielectric wall structure and a gate structure formed around the channel structures and covering a sidewall of the isolation feature.
    Type: Application
    Filed: February 2, 2023
    Publication date: March 28, 2024
    Inventors: Chun-Sheng LIANG, Hong-Chih CHEN, Ta-Chun LIN, Shih-Hsun CHANG, Chih-Hao CHANG
  • Publication number: 20240105786
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a first source/drain (S/D) region disposed over a substrate, a second S/D region disposed over the substrate, a dielectric wall disposed between the first and second S/D regions, a first conductive contact disposed over and electrically connected to the first S/D region, a second conductive contact disposed over and electrically connected to the second S/D region, and a first dielectric material in contact with the dielectric wall. The first dielectric material has a top surface located at a first level between a top surface of the first conductive contact and a bottom surface of the first conductive contact, and the first dielectric material extends from the first level to a second level located below the bottom surface of the first conductive contact.
    Type: Application
    Filed: January 15, 2023
    Publication date: March 28, 2024
    Inventors: Chun-Sheng LIANG, Hong-Chih CHEN
  • Publication number: 20240084455
    Abstract: Some implementations described herein include systems and techniques for fabricating a wafer-on-wafer product using a filled lateral gap between beveled regions of wafers included in a stacked-wafer assembly and along a perimeter region of the stacked-wafer assembly. The systems and techniques include a deposition tool having an electrode with a protrusion that enhances an electromagnetic field along the perimeter region of the stacked-wafer assembly during a deposition operation performed by the deposition tool. Relative to an electromagnetic field generated by a deposition tool not including the electrode with the protrusion, the enhanced electromagnetic field improves the deposition operation so that a supporting fill material may be sufficiently deposited.
    Type: Application
    Filed: February 8, 2023
    Publication date: March 14, 2024
    Inventors: Che Wei YANG, Chih Cheng SHIH, Kuo Liang LU, Yu JIANG, Sheng-Chan LI, Kuo-Ming WU, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Publication number: 20240088149
    Abstract: A semiconductor structure includes: a substrate; a first fin and a second fin disposed on the substrate and spaced apart from each other; a dielectric wall disposed on the substrate and having first and second wall surfaces; a third fin disposed on the substrate to be in direct contact with at least one of the first and second fins; a first device disposed on the first fin and including first channel features extending away from the first wall surface; a second device disposed on the second fin and including second channel features extending away from the second wall surface; at least one third device disposed on the third fin and including third channel features; and an isolation feature disposed on the substrate to permit the third device to be electrically isolated from the first and second devices. A method for manufacturing the semiconductor structure is also disclosed.
    Type: Application
    Filed: February 15, 2023
    Publication date: March 14, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun LIN, Ming-Heng TSAI, Huang-Chao CHANG, Chun-Sheng LIANG, Chih-Hao CHANG, Jhon Jhy LIAW