Patents by Inventor Sheng Ta Lee

Sheng Ta Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240098959
    Abstract: A method includes etching a first semiconductor fin and a second semiconductor fin to form first recesses. The first and the second semiconductor fins have a first distance. A third semiconductor fin and a fourth semiconductor fin are etched to form second recesses. The third and the fourth semiconductor fins have a second distance equal to or smaller than the first distance. An epitaxy is performed to simultaneously grow first epitaxy semiconductor regions from the first recesses and second epitaxy semiconductor regions from the second recesses. The first epitaxy semiconductor regions are merged with each other, and the second epitaxy semiconductor regions are separated from each other.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 9825517
    Abstract: A controlling module includes a current-command generating unit for generating reference current signal based on an output voltage of a power conversion module, a current sensor configured to sense an inductor current of the power conversion module and generate current sense signal, a current comparator for generating current compare signal when the current sense signal equaling to the reference current signal, and an off-time controller for generating off-time control signal based on an input voltage and the output voltage of the power conversion module. The controlling module further includes a time-base counter and a peak-current controlling unit. The time-base counter receives the current compare signal and the off-time control signal, and generates a trigger signal when an off-time interval established by the off-time control signal elapses. The peak-current controlling unit makes a power switch of the power conversion module in a conduction state based on the trigger signal.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: November 21, 2017
    Assignee: DELTA ELECTRONICS, INC.
    Inventor: Sheng-Ta Lee
  • Publication number: 20170279344
    Abstract: A controlling module includes a current-command generating unit for generating reference current signal based on an output voltage of a power conversion module, a current sensor configured to sense an inductor current of the power conversion module and generate current sense signal, a current comparator for generating current compare signal when the current sense signal equaling to the reference current signal, and an off-time controller for generating off-time control signal based on an input voltage and the output voltage of the power conversion module. The controlling module further includes a time-base counter and a peak-current controlling unit. The time-base counter receives the current compare signal and the off-time control signal, and generates a trigger signal when an off-time interval established by the off-time control signal elapses. The peak-current controlling unit makes a power switch of the power conversion module in a conduction state based on the trigger signal.
    Type: Application
    Filed: October 31, 2016
    Publication date: September 28, 2017
    Inventor: Sheng-Ta LEE
  • Patent number: 9302907
    Abstract: The present invention discloses a MEMS device with guard ring, and a method for making the MEMS device. The MEMS device comprises a bond pad and a sidewall surrounding and connecting with the bond pad, characterized in that the sidewall forms a guard ring by an etch-resistive material.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: April 5, 2016
    Assignee: PIXART IMAGING INCORPORATION
    Inventors: Hsin Hui Hsu, Sheng Ta Lee, Chuan Wei Wang
  • Publication number: 20150197420
    Abstract: The present invention discloses a MEMS device with guard ring, and a method for making the MEMS device. The MEMS device comprises a bond pad and a sidewall surrounding and connecting with the bond pad, characterized in that the sidewall forms a guard ring by an etch-resistive material.
    Type: Application
    Filed: March 27, 2015
    Publication date: July 16, 2015
    Applicant: PixArt Imaging Incorporation
    Inventors: Hsin Hui Hsu, Sheng Ta Lee, Chuan Wei Wang
  • Patent number: 9018718
    Abstract: The present invention discloses a MEMS device with guard ring, and a method for making the MEMS device. The MEMS device comprises a bond pad and a sidewall surrounding and connecting with the bond pad, characterized in that the sidewall forms a guard ring by an etch-resistive material.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: April 28, 2015
    Assignee: Pixart Imaging Incorporation
    Inventors: Hsin Hui Hsu, Sheng Ta Lee, Chuan Wei Wang
  • Patent number: 9000544
    Abstract: A MEMS package structure, including a substrate, an interconnecting structure, an upper metallic layer, a deposition element and a packaging element is provided. The interconnecting structure is disposed on the substrate. The MEMS structure is disposed on the substrate and within a first cavity. The upper metallic layer is disposed above the MEMS structure and the interconnecting structure, so as to form a second cavity located between the upper metallic layer and the interconnecting structure and communicates with the first cavity. The upper metallic layer has at least a first opening located above the interconnecting structure and at least a second opening located above the MEMS structure. Area of the first opening is greater than that of the second opening. The deposition element is disposed above the upper metallic layer to seal the second opening. The packaging element is disposed above the upper metallic layer to seal the first opening.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: April 7, 2015
    Assignee: Pixart Imaging Inc.
    Inventors: Hsin-Hui Hsu, Sheng-Ta Lee, Chuan-Wei Wang
  • Patent number: 8952463
    Abstract: A MEMS (Micro-Electro-Mechanical-System) structure preventing stiction, comprising: a substrate; and at least two structural layers above the substrate, wherein at least one of the at least two structural layers is a movable part, and anyone or more of the at least two structural layers is provided with at least one bump to prevent the movable part from sticking to another portion of the MEMS structure.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: February 10, 2015
    Assignee: Pixart Imaging Incorporation
    Inventors: Chuan-Wei Wang, Sheng-Ta Lee, Hsin-Hui Hsu
  • Publication number: 20140339655
    Abstract: A MEMS package structure, including a substrate, an interconnecting structure, an upper metallic layer, a deposition element and a packaging element is provided. The interconnecting structure is disposed on the substrate. The MEMS structure is disposed on the substrate and within a first cavity. The upper metallic layer is disposed above the MEMS structure and the interconnecting structure, so as to form a second cavity located between the upper metallic layer and the interconnecting structure and communicates with the first cavity. The upper metallic layer has at least a first opening located above the interconnecting structure and at least a second opening located above the MEMS structure. Area of the first opening is greater than that of the second opening. The deposition element is disposed above the upper metallic layer to seal the second opening. The packaging element is disposed above the upper metallic layer to seal the first opening.
    Type: Application
    Filed: August 1, 2014
    Publication date: November 20, 2014
    Inventors: HSIN-HUI HSU, SHENG-TA LEE, CHUAN-WEI WANG
  • Publication number: 20140268962
    Abstract: A hybrid DC/AC inverter for converting DC power to AC power feed to a grid voltage system has an input circuit, a half/full bridge switchable circuit and an output circuit. The input circuit has two input terminals for connecting to a DC source and outputs the DC power. The half/full bridge switchable circuit can be operated in a buck mode based on amplitudes of the DC power and the grid voltage. The output circuit is for connecting to the grid voltage system. According to comparison results between of the DC power and the grid voltage, the half/full bridge switchable circuit is selectively operated in the buck mode to reduce switching loss and power consumption.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Cyber Power Systems Inc.T
    Inventors: Sheng-Ta Lee, Chao-Yang Hsu
  • Patent number: 8829628
    Abstract: A MEMS package structure, including a substrate, an interconnecting structure, an upper metallic layer, a deposition element and a packaging element is provided. The interconnecting structure is disposed on the substrate. The MEMS structure is disposed on the substrate and within a first cavity. The upper metallic layer is disposed above the MEMS structure and the interconnecting structure, so as to form a second cavity located between the upper metallic layer and the interconnecting structure and communicates with the first cavity. The upper metallic layer has at least a first opening located above the interconnecting structure and at least a second opening located above the MEMS structure. Area of the first opening is greater than that of the second opening. The deposition element is disposed above the upper metallic layer to seal the second opening. The packaging element is disposed above the upper metallic layer to seal the first opening.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: September 9, 2014
    Assignee: Pixart Imaging Inc.
    Inventors: Hsin-Hui Hsu, Sheng-Ta Lee, Chuan-Wei Wang
  • Patent number: 8729660
    Abstract: The present invention discloses a MEMS (Micro-Electro-Mechanical System) integrated chip with cross-area interconnection, comprising: a substrate; a MEMS device area on the substrate; a microelectronic device area on the substrate; a guard ring separating the MEMS device area and the microelectronic device area; and a conductive layer on the surface of the substrate below the guard ring, or a well in the substrate below the guard ring, as a cross-area interconnection electrically connecting the MEMS device area and the microelectronic device area.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: May 20, 2014
    Assignee: Pixart Imaging Inc.
    Inventors: Hsin-Hui Hsu, Chuan-Wei Wang, Sheng-Ta Lee
  • Patent number: 8704331
    Abstract: The present invention discloses a MEMS (Micro-Electro-Mechanical System) integrated chip with cross-area interconnection, comprising: a substrate; a MEMS device area on the substrate; a microelectronic device area on the substrate; a guard ring separating the MEMS device area and the microelectronic device area; and a conductive layer on the surface of the substrate below the guard ring, or a well in the substrate below the guard ring, as a cross-area interconnection electrically connecting the MEMS device area and the microelectronic device area.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: April 22, 2014
    Assignee: Pixart Imaging Inc., R.O.C.
    Inventors: Hsin-Hui Hsu, Chuan-Wei Wang, Sheng-Ta Lee
  • Patent number: 8692338
    Abstract: A method for fabricating a MEMS resonator is provided. A stacked main body including a silicon substrate, a plurality of metallic layers and an isolation layer is formed and has a first etching channel extending from the metallic layers into the silicon substrate. The isolation layer is filled in the first etching channel. The stacked main body also has a predetermined suspended portion. Subsequently, a portion of the isolation layer is removed so that a second etching channel is formed and the remained portion of the isolation layer covers an inner sidewall of the first etching channel. Afterwards, employing the isolation layer that covers the inner sidewall of the first etching channel as a mask, an isotropic etching process through the second etching channel is applied to the silicon substrate, thereby forming the MEMS resonator suspending above the silicon substrate. A micro electronic device is also provided.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: April 8, 2014
    Assignee: Pixart Imaging Inc.
    Inventors: Chuan-Wei Wang, Sheng-Ta Lee, Hsin-Hui Hsu
  • Patent number: 8679886
    Abstract: A microelectronic device including a substrate, at least a semi-conductor element, an anti metal ion layer, a non-doping oxide layer and a MEMS structure is provided. The substrate has a CMOS circuit region and a MEMS region. The semi-conductor element is configured within the CMOS circuit region of the substrate. The anti metal ion layer is disposed within the CMOS circuit region of the substrate and covers the semi-conductor element. The non-doping oxide layer is disposed on the substrate within the MEMS region. The MEMS structure is partially suspended above the non-doping oxide layer. The present invention also provides a MEMS package structure and a fabricating method thereof.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: March 25, 2014
    Assignee: Pixart Imaging Inc.
    Inventors: Hsin-Hui Hsu, Sheng-Ta Lee, Chuan-Wei Wang
  • Patent number: 8664099
    Abstract: The present invention discloses a MEMS device with particles blocking function, and a method for making the MEMS device. The MEMS device comprises: a substrate on which is formed a MEMS device region; and a particles blocking layer deposited on the substrate.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: March 4, 2014
    Assignee: PixArt Imaging Incorporation, R.O.C.
    Inventors: Chuan Wei Wang, Sheng Ta Lee
  • Patent number: 8640543
    Abstract: The present invention discloses a micro-electro-mechanical system (MEMS) device, comprising: a mass including a main body and two capacitor plates located at the two sides of the main body and connected with the main body, the two capacitor plates being at different elevation levels; an upper electrode located above one of the two capacitor plates, forming one capacitor therewith; and a lower electrode located below the other of the two capacitor plates, forming another capacitor therewith, wherein the upper and lower electrodes are misaligned with each other in a horizontal direction.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: February 4, 2014
    Assignee: Pixart Imaging Incorporation
    Inventors: Sheng Ta Lee, Chuan Wei Wang
  • Patent number: 8529773
    Abstract: The present invention discloses a method for making a MEMS device, comprising: providing a zero-layer substrate; forming a MEMS device region on the substrate, wherein the MEMS device region is provided with a first sacrificial region to separate a suspension structure of the MEMS device from another part of the MEMS device; removing the first sacrificial region by etching; and micromachining the zero-layer substrate.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: September 10, 2013
    Assignee: PixArt Imaging Incorporation R.O.C.
    Inventors: Chuan Wei Wang, Sheng Ta Lee
  • Patent number: 8513041
    Abstract: The present invention discloses a MEMS (Micro-Electro-Mechanical System) chip and a method for making the MEMS chip. The MEMS chip comprises: a first substrate having a first surface and a second surface opposing each other; a microelectronic device area on the first surface; a first MEMS device area on the second surface; and a conductive interconnection structure electrically connecting the microelectronic device area and the first MEMS device area.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 20, 2013
    Assignee: Pixart Imaging Corporation
    Inventors: Chuan-Wei Wang, Sheng-Ta Lee, Hsin-Hui Hsu, Wei-Chung Wang
  • Publication number: 20130186201
    Abstract: The present invention discloses a micro-electro-mechanical system (MEMS) device, comprising: a mass including a main body and two capacitor plates located at the two sides of the main body and connected with the main body, the two capacitor plates being at different elevation levels; an upper electrode located above one of the two capacitor plates, forming one capacitor therewith; and a lower electrode located below the other of the two capacitor plates, forming another capacitor therewith, wherein the upper and lower electrodes are misaligned with each other in a horizontal direction.
    Type: Application
    Filed: April 19, 2012
    Publication date: July 25, 2013
    Inventors: Sheng-Ta Lee, Chuan Wei Wang