Patents by Inventor Sheng-Wei Wu

Sheng-Wei Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145898
    Abstract: An electronic device including a metal casing and at least one antenna module is provided. The metal casing includes at least one window. The at least one antenna module is disposed in the at least one window. The at least one antenna module includes a first radiator and a second radiator. The first radiator includes a feeding end, a first ground end joined to the metal casing, a second ground end, a first portion extending from the feeding end to the first ground end, and a second portion extending from the feeding end to the second ground end. A first coupling gap is between the second radiator and the first portion. A second coupling gap is between at least part of the second radiator and the metal casing, and the second radiator includes a third ground end joined to the metal casing.
    Type: Application
    Filed: September 8, 2023
    Publication date: May 2, 2024
    Applicant: PEGATRON CORPORATION
    Inventors: Chien-Yi Wu, Chao-Hsu Wu, Sheng-Chin Hsu, Chih-Wei Liao, Hau Yuen Tan, Cheng-Hsiung Wu, Shih-Keng Huang
  • Publication number: 20240145919
    Abstract: An antenna module includes a first metal plate and a frame body. The frame body surrounds the first metal plate. The frame body includes a first antenna radiator, a second antenna radiator, a third antenna radiator, a first breakpoint and a second breakpoint. The first antenna radiator includes a first feeding end and excites a first frequency band. The second antenna radiator includes a second feeding end and excites a second frequency band. The third antenna radiator includes a third feeding end and excites a third frequency band. The first breakpoint is located between the first antenna radiator and the second antenna radiator. The second breakpoint is located between the second antenna radiator and the third antenna radiator. An electronic device including the above-mentioned antenna module is also provided.
    Type: Application
    Filed: September 6, 2023
    Publication date: May 2, 2024
    Applicant: PEGATRON CORPORATION
    Inventors: Chien-Yi Wu, Shih-Keng Huang, Chao-Hsu Wu, Chih-Wei Liao, Sheng-Chin Hsu, Hao-Hsiang Yang, Tse-Hsuan Wang
  • Publication number: 20240124163
    Abstract: A magnetic multi-pole propulsion array system is applied to at least one external cathode and includes a plurality of magnetic multi-pole thrusters connected adjacent to each other. Each magnetic multi-pole thruster includes a propellant provider, a discharge chamber, an anode and a plurality of magnetic components. The propellant provider outputs propellant. The discharge chamber is connected with the propellant provider to accommodate the propellant. The anode is disposed inside the discharge chamber to generate an electric field. The plurality of magnetic components is respectively disposed on several sides of the discharge chamber. One of the several sides of the discharge chamber of the magnetic multi-pole thruster is applied for one side of a discharge chamber of another magnetic multi-pole thruster.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 18, 2024
    Applicant: National Cheng Kung University
    Inventors: Yueh-Heng Li, Yu-Ting Wu, Chao-Wei Huang, Wei-Cheng Lo, Hsun-Chen Hsieh, Ping-Han Huang, Yi-Long Huang, Sheng-Wen Liu, Wei-Cheng Lien
  • Patent number: 11958090
    Abstract: The present disclosure relates to an apparatus and a method for wafer cleaning. The apparatus can include a wafer holder configured to hold a wafer; a cleaning nozzle configured to dispense a cleaning fluid onto a first surface (e.g., front surface) of the wafer; and a cleaning brush configured to clean a second surface (e.g., back surface) of the wafer. Using the cleaning fluid, the cleaning brush can clean the second surface of the wafer with a scrubbing motion and ultrasonic vibration.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo Chen Chen, Sheng-Wei Wu, Yung-Li Tsai
  • Patent number: 11961810
    Abstract: An embodiment bump on trace (BOT) structure includes a contact element supported by an integrated circuit, an under bump metallurgy (UBM) feature electrically coupled to the contact element, a metal ladder bump mounted on the under bump metallurgy feature, the metal ladder bump having a first tapering profile, and a substrate trace mounted on a substrate, the substrate trace having a second tapering profile and coupled to the metal ladder bump through direct metal-to-metal bonding. An embodiment chip-to-chip structure may be fabricated in a similar fashion.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yu-Wei Lin, Sheng-Yu Wu, Yu-Jen Tseng, Tin-Hao Kuo, Chen-Shien Chen
  • Publication number: 20240120313
    Abstract: A chip package structure is provided. The chip package structure includes a chip. The chip package structure includes a conductive ring-like structure over and electrically insulated from the chip. The conductive ring-like structure surrounds a central region of the chip. The chip package structure includes a first solder structure over the conductive ring-like structure. The first solder structure and the conductive ring-like structure are made of different materials.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Sheng-Yao YANG, Ling-Wei LI, Yu-Jui WU, Cheng-Lin HUANG, Chien-Chen LI, Lieh-Chuan CHEN, Che-Jung CHU, Kuo-Chio LIU
  • Publication number: 20240113429
    Abstract: An electronic device including a bracket and an antenna is provided. The bracket includes first, second, third, and fourth surfaces. The antenna includes a radiator. The radiator includes first, second, third, and fourth portions. The first portion is located on the first surface and includes connected first and second sections. The second portion is located on the second surface and includes third, fourth, fifth, and sixth sections. The third section, the fourth section, and the fifth sections are bent and connected to form a U shape. The third portion is located on the third surface and is connected to the second section and the fourth section. The fourth portion is located on the fourth surface and is connected to the fifth section, the sixth section, and the third portion. The radiator is adapted to resonate at a low frequency band and a first high frequency band.
    Type: Application
    Filed: August 16, 2023
    Publication date: April 4, 2024
    Applicant: PEGATRON CORPORATION
    Inventors: Chien-Yi Wu, Chao-Hsu Wu, Sheng-Chin Hsu, Chia-Hung Chen, Chih-Wei Liao, Hau Yuen Tan, Hao-Hsiang Yang, Shih-Keng Huang
  • Publication number: 20240084455
    Abstract: Some implementations described herein include systems and techniques for fabricating a wafer-on-wafer product using a filled lateral gap between beveled regions of wafers included in a stacked-wafer assembly and along a perimeter region of the stacked-wafer assembly. The systems and techniques include a deposition tool having an electrode with a protrusion that enhances an electromagnetic field along the perimeter region of the stacked-wafer assembly during a deposition operation performed by the deposition tool. Relative to an electromagnetic field generated by a deposition tool not including the electrode with the protrusion, the enhanced electromagnetic field improves the deposition operation so that a supporting fill material may be sufficiently deposited.
    Type: Application
    Filed: February 8, 2023
    Publication date: March 14, 2024
    Inventors: Che Wei YANG, Chih Cheng SHIH, Kuo Liang LU, Yu JIANG, Sheng-Chan LI, Kuo-Ming WU, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Publication number: 20240090234
    Abstract: A magnetoresistive random access memory (MRAM) includes a first transistor and a second transistor on a substrate, a source line coupled to a first source/drain region of the first transistor, and a first metal interconnection coupled to a second source/drain region of the first transistor. Preferably, the first metal interconnection is extended to overlap the first transistor and the second transistor and the first metal interconnection further includes a first end coupled to the second source/drain region of the first transistor and a second end coupled to a magnetic tunneling junction (MTJ).
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Te-Wei Yeh, Chien-Liang Wu
  • Publication number: 20240071999
    Abstract: A first polymer layer is formed across a package region and a test region. A first metal pattern is formed in the package region and a first test pattern is simultaneously formed in the test region. The first metal pattern has an upper portion located on the first polymer layer and a lower portion penetrating through the first polymer layer, and the first test pattern is located on the first polymer layer and has a first opening exposing the first polymer layer. A second polymer layer is formed on the first metal pattern in the package region and a second test pattern is simultaneously formed on the first test pattern in the test region. The second polymer layer has a second opening exposing the upper portion of the first metal pattern, and the second test pattern has a third opening greater than the first opening of the first test pattern.
    Type: Application
    Filed: August 24, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tseng Hsing Lin, Chien-Hsun Lee, Tsung-Ding Wang, Jung-Wei Cheng, Hao-Cheng Hou, Sheng-Chi Lin, Jeng-An Wang, Yao-Cheng Wu
  • Publication number: 20230384030
    Abstract: The present disclosure is directed to a wafer drying system and method that detects airborne molecular contaminants in a drying gas as a feedback parameter for a single wafer or multi-wafer drying process. For example, the system comprises a wafer drying station configured to dispense a drying gas over one or more wafers to dry the one or more wafers, a valve configured to divert the drying gas to a first portion and a second portion, and an exhaust line configured to exhaust the first portion of the drying gas. The system further comprises a detector configured to receive the second portion of the drying gas and to determine a real time property of the second portion of the drying gas, and a control unit configured to control a feedback operation of the wafer drying station based on the real time property of the second portion of the drying gas.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Chun Hsu, Sheng-Wei Wu, Shu-Yen Wang
  • Patent number: 11766703
    Abstract: The present disclosure relates to an apparatus and a method for wafer cleaning. The apparatus can include a wafer holder configured to hold a wafer; a cleaning nozzle configured to dispense a cleaning fluid onto a first surface (e.g., front surface) of the wafer; and a cleaning brush configured to clean a second surface (e.g., back surface) of the wafer. Using the cleaning fluid, the cleaning brush can clean the second surface of the wafer with a scrubbing motion and ultrasonic vibration.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo Chen Chen, Sheng-Wei Wu, Yung-Li Tsai
  • Publication number: 20230062848
    Abstract: A semiconductor device manufacturing system and a method for manufacturing semiconductor device are provided. The semiconductor device manufacturing system includes a substrate processing device and a processor. The substrate processing device includes a processing chamber, a gas supply module and a gas source. The processor is configured to monitor and control the gas supplied into the substrate processing device.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: WEI-CHUN HSU, YUNG-LI TSAI, SHENG-WEI WU, CHIH-HAO CHAO, YU-HAO HUANG
  • Patent number: 11581199
    Abstract: A wafer drying method that detects molecular contaminants in a drying gas as a feedback parameter for a multiple wafer drying process is disclosed. For example, the method includes dispensing, in a wafer drying module, a drying gas over a batch of wafers. Further, the method includes collecting the drying gas from an exhaust of the wafer drying module and determining the concentration of contaminants in the drying gas. The method also includes re-dispensing the drying gas over the batch of wafers if the concentration of contaminants is greater than a baseline value and transferring the batch of wafers out of the wafer drying module if the concentration is equal to or less than the baseline value.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: February 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Chun Hsu, Sheng-Wei Wu, Shu-Yen Wang
  • Publication number: 20230017404
    Abstract: The present disclosure relates to an apparatus and a method for wafer cleaning. The apparatus can include a wafer holder configured to hold a wafer; a cleaning nozzle configured to dispense a cleaning fluid onto a first surface (e.g., front surface) of the wafer; and a cleaning brush configured to clean a second surface (e.g., back surface) of the wafer. Using the cleaning fluid, the cleaning brush can clean the second surface of the wafer with a scrubbing motion and ultrasonic vibration.
    Type: Application
    Filed: July 28, 2022
    Publication date: January 19, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: BO CHEN CHEN, Sheng-Wei Wu, Yung-Li Tsai
  • Publication number: 20220208581
    Abstract: The present disclosure relates to a contamination controlled semiconductor processing system. The contamination controlled semiconductor processing system includes a processing chamber, a contamination detection system, and a contamination removal system. The processing chamber is configured to process a wafer. The contamination detection system is configured to determine whether a contamination level on a surface of the door is greater than a baseline level. The contamination removal system is configured to remove contaminants from the surface of the door in response to the contamination level being greater than the baseline level.
    Type: Application
    Filed: March 21, 2022
    Publication date: June 30, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo Chen CHEN, Sheng-Wei Wu, Yung-Li Tsai
  • Patent number: 11282728
    Abstract: The present disclosure relates to a contamination controlled semiconductor processing system. The contamination controlled semiconductor processing system includes a processing chamber, a contamination detection system, and a contamination removal system. The processing chamber is configured to process a wafer. The contamination detection system is configured to determine whether a contamination level on a surface of the door is greater than a baseline level. The contamination removal system is configured to remove contaminants from the surface of the door in response to the contamination level being greater than the baseline level.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: March 22, 2022
    Inventors: Bo Chen Chen, Sheng-Wei Wu, Yung-Li Tsai
  • Publication number: 20210215424
    Abstract: The present disclosure is directed to a wafer drying system and method that detects airborne molecular contaminants in a drying gas as a feedback parameter for a single wafer or multi-wafer drying process. For example, the system comprises a wafer drying station configured to dispense a drying gas over one or more wafers to dry the one or more wafers, a valve configured to divert the drying gas to a first portion and a second portion, and an exhaust line configured to exhaust the first portion of the drying gas. The system further comprises a detector configured to receive the second portion of the drying gas and to determine a real time property of the second portion of the drying gas, and a control unit configured to control a feedback operation of the wafer drying station based on the real time property of the second portion of the drying gas.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Chun HSU, Sheng-Wei Wu, Shu-Yen Wang
  • Patent number: 10962285
    Abstract: A wafer drying method to detect airborne molecular contaminants in a drying gas as a feedback parameter for a single wafer or multi-wafer drying process is provided. For example, the method includes dispensing in a wafer drying station a drying gas over one or more wafers; collecting the drying gas from an exhaust of the wafer drying station; determining the concentration of contaminants in the drying gas; re-dispensing the drying gas over the one or more wafers if the concentration of contaminants is higher than a baseline value; and transferring the one or more wafers out of the wafer drying station if the concentration is equal to or less than the baseline value.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: March 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Chun Hsu, Sheng-Wei Wu, Shu-Yen Wang
  • Patent number: 10943804
    Abstract: The present disclosure describes a method for controlling a wet processing system includes dispensing one or more chemicals into a processing chamber according to one or more process parameters. The method also includes injecting one or more illumination markers into the processing chamber and obtaining images representing locations of the one or more illumination markers. The method further includes determining a trajectory of an illumination marker of the one or more illumination markers based on the images and determining whether the determined trajectory is outside a predetermined trajectory range. In response to the determined trajectory being outside the predetermined trajectory range, the method further includes adjusting the one or more process parameters.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: March 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Chen Chen, Sheng-Wei Wu, Yung-Li Tsai