Patents by Inventor Sheng Ye

Sheng Ye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190068227
    Abstract: A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.
    Type: Application
    Filed: October 26, 2018
    Publication date: February 28, 2019
    Inventors: Subramanian Anantharaman Chandrasekarapuram, Anand Anandakumar, Stephane Laurent-Michel, Sheng Ye, Raja Pullela, Glenn Chang, Vamsi Paidi
  • Patent number: 10211868
    Abstract: A transceiver comprises local oscillator circuitry, phase noise determination circuitry, mixing circuitry, and digital signal processing circuitry. The local oscillator circuitry is operable to generate a local oscillator signal. The phase noise determination circuitry is operable to introduce a frequency-dependent phase shift to the local oscillator signal to generate a phase-shifted version of the local oscillator signal. The mixing circuitry is operable to mix the local oscillator signal and the phase-shifted version of the local oscillator to generate a baseband signal having an amplitude proportional to a phase difference between the local oscillator signal and the phase-shifted version of the local oscillator signal. The digital signal processing circuitry is operable to process the baseband signal to determine a phase error of the local oscillator signal, and perform signal compensation based on the determined phase error.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: February 19, 2019
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Sheng Ye
  • Publication number: 20190044525
    Abstract: Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals.
    Type: Application
    Filed: October 8, 2018
    Publication date: February 7, 2019
    Inventors: Pawandeep Taluja, Mingrui Zhu, Xuefeng Chen, Anand Anandakumar, Sheng Ye, Timothy Gallagher
  • Patent number: 10183758
    Abstract: The present disclosure provides methods and articles useful in sealing fasteners, including seal caps and in particular translucent or transparent seals or seal caps. In some embodiments, a seal cap which is optically translucent and optionally visibly transparent contains an uncured sealant, which is optionally optically translucent or visibly transparent, and is applied to a fastener. In some embodiments, the sealant is cured by application of actinic radiation to the sealant through the seal cap. In another aspect, a protected fastener construction is provided comprising: q) a fastener; r) a seal cap; and s) a cured sealant; wherein the sealant is optically translucent and optionally visibly transparent.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: January 22, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jonathan D. Zook, Larry S. Hebert, Michael D. Swan, Sheng Ye, Susan E. DeMoss, Robin E. Wright
  • Patent number: 10187096
    Abstract: A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: January 22, 2019
    Assignee: Maxlinear, Inc.
    Inventors: Subramanian Anantharaman Chandrasekarapuram, Anand Anandakumar, Stephane Laurent-Michel, Sheng Ye, Raja Pullela, Glenn Chang, Vamsi Paidi
  • Publication number: 20190020400
    Abstract: Each of a plurality of modules comprises a respective one of a plurality of antenna elements, and each of a subset of the plurality of modules comprising a respective one of a plurality of transceivers, wherein the plurality of modules are interconnected via one or more communication links. The circuitry may be operable to receive a calibration signal via the plurality of antenna elements, determine, for each one of the antenna elements, a time and/or phase of arrival of the calibration signal, calculate, based on the time and/or phase of arrival of the calibration signal at each of the plurality of antenna elements, electrical distances between the plurality of antenna elements on the one or more communication links, and calculate beamforming coefficients for use with the plurality of antenna elements based on the electrical distances.
    Type: Application
    Filed: September 13, 2018
    Publication date: January 17, 2019
    Inventors: Curtis Ling, Sheng Ye
  • Patent number: 10174781
    Abstract: The present disclosure provides methods and articles useful in sealing fasteners, including seal caps and methods of their use, and in particular light weight seal caps having higher dielectric breakdown strength, lower weight, and/or lower wall thick-ness. In some embodiments, the seal caps according to the present invention are made of a material having a dielectric breakdown strength of greater than 1.0 kV/mm, in some embodiments greater than 15.0 kV/mm, and in some embodiments greater than 50.0 kV/mm. In some embodiments, the seal caps according to the present invention are thin-walled, having an average wall thickness of less than 1.5 mm and in some embodiments less than less than 0.5 mm In some embodiments, the seal cap comprises a polyurethane polymer, a polythioether polymer, a polysulfide polymer, a fluorinated thermoplastic polymer, a THV polymer, a fluorinated thermo-set polymer, an engineering thermoplastic, and/or a PEEK polymer.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: January 8, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jonathan D. Zook, Larry S. Hebert, Michael D. Swan, Sheng Ye, Susan E. DeMoss, Robin E. Wright
  • Publication number: 20180376241
    Abstract: The present disclosure provides a sound generator. The sound generator includes a housing with a cavity; a speaker unit accommodated inside the cavity; and a mesh housing arranged inside the cavity. The mesh housing is compression molded from an acoustic transmission mesh and includes an opening. An inner wall of the housing covers the opening and encloses jointly with the mesh housing for forming an accommodation cavity for encapsulating sound absorbing powder inside.
    Type: Application
    Filed: November 21, 2017
    Publication date: December 27, 2018
    Inventors: Bin Zhao, Sheng Ye, Ye Shang, Minmin Chen
  • Publication number: 20180367178
    Abstract: Methods and systems for a baseband cross-bar may comprise receiving one or more radio frequency (RF) signals in a wireless communication device via antennas coupled to a plurality of receiver paths in the wireless device. The received RF signals may be converted to baseband frequencies. One or more of the down-converted signals may be coupled to receiver paths utilizing a baseband cross-bar. The baseband cross-bar may comprise a plurality of switches, which may comprise CMOS transistors. In-phase and quadrature signals may be processed in the one or more of the plurality of receiver paths. The one or more RF signals comprise cellular signals and/or global navigation satellite signals. A single-ended received RF signal may be converted to a differential signal in one or more of the plurality of receiver paths. The baseband cross-bar may be controlled utilizing a reduced instruction set computing (RISC) processor.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Raja Pullela, Sheng Ye, Morten Damgaard
  • Publication number: 20180367837
    Abstract: Methods and systems for multi-path video and network channels may comprise a communication device comprising a wideband tuner (WB) and a narrowband tuner (NB). A video channel and a network channel may be received in the WB when the device is operating in a first stage. A video channel and a network channel may be received in the WB and the network channel may also be received in the NB when the device is operating in a second stage. The network channel may be received in the NB when the device is operating in a third stage. The reception of the network channel from both the WB and NB may enable a continuous reception of the network channel in a transition between the first and third stages. The WB may be operable to receive a plurality of channels and the NB may be operable to receive a single channel.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Anand Anandakumar, Sheng Ye, Curtis Ling
  • Patent number: 10148417
    Abstract: A method and system for duty-cycled high speed clock and data recovery with forward error correction are provided. The system operates on a first digital signal comprising a first plurality of samples and a second digital signal comprising a second plurality of samples. The second plurality of samples may be a subset of the first plurality of samples, for example, if the first and second pluralities of samples are generated by one analog-to-digital converter. A clock and data recovery module is operable to produce a timing indication according the second digital signal. The second plurality of samples is sampled intermittently. The discontinuity between bursts of samples in the second signal corresponds to a duty cycle. A forward error correction module is operable to produce a digital error-corrected signal according to the first digital signal and the timing indication.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: December 4, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Sheng Ye
  • Patent number: 10135072
    Abstract: A method for manufacturing a composite is disclosed. The method includes steps of (a) providing a powder in a first weight ratio, a graphene oxide in a second weight ratio, a first modifying agent having a negative electric charge, and a second modifying agent having a positive electric charge; (b) reacting the first modifying agent with the powder so that a surface of the powder has the negative electric charge; (c) reacting the second modifying agent with the graphene oxide so that a surface of the graphene oxide has the positive electric charge; and (d) mixing the powder having the negative electric charge and the graphene oxide having the positive electric charge to form a composite.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: November 20, 2018
    Assignee: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Bing Joe Hwang, Yun Sheng Ye, Wei Nien Su
  • Publication number: 20180316369
    Abstract: Systems and methods are provided for handling jitter improvement in transmitters. During processing of input data for serial transmission, it may be determined if jitter may occur, and when jitter occurs one or more adjustments may be determined, based on dummy data, to reduce jitter in an output corresponding to the input data. The one or more adjustments may then be applied during processing of the input data, to reduce jitter in a serial output corresponding to the input data. The dummy data may be generated based on the input data. The dummy data may be configured such that it may generate corresponding dummy current pulses which may be used in controlling supply variations during generation of the serial output. The use of the dummy data may be selectively turned on or off.
    Type: Application
    Filed: July 2, 2018
    Publication date: November 1, 2018
    Inventors: Amir Hadji-Abdolhamid, Sheng Ye
  • Patent number: 10103822
    Abstract: Each of a plurality of modules comprises a respective one of a plurality of antenna elements, and each of a subset of the plurality of modules comprising a respective one of a plurality of transceivers, wherein the plurality of modules are interconnected via one or more communication links. The circuitry may be operable to receive a calibration signal via the plurality of antenna elements, determine, for each one of the antenna elements, a time and/or phase of arrival of the calibration signal, calculate, based on the time and/or phase of arrival of the calibration signal at each of the plurality of antenna elements, electrical distances between the plurality of antenna elements on the one or more communication links, and calculate beamforming coefficients for use with the plurality of antenna elements based on the electrical distances.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: October 16, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Sheng Ye
  • Patent number: 10097193
    Abstract: Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: October 9, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Pawandeep Taluja, Mingrui Zhu, Xuefeng Chen, Anand Anandakumar, Sheng Ye, Timothy Gallagher
  • Publication number: 20180262201
    Abstract: An asynchronous successive approximation register analog-to-digital converter (SAR ADC), which utilizes one or more overlapping redundant bits in each digital-to-analog converter (DAC) code word, is operable to generate an indication signal that indicates completion of each comparison step and indicates that an output decision for each comparison step is valid. A timer may be initiated based on the generated indication signal. A timeout signal may be generated that preempts the indication signal and forces a preemptive decision, where the preemptive decision sets one or more remaining bits up to, but not including, the one or more overlapping redundant bits in a corresponding digital-to-analog converter code word for a current comparison step to a particular value. For example, the one or more remaining bits may be set to a value that is derived from a value of a bit that was determined in an immediately preceding decision.
    Type: Application
    Filed: May 9, 2018
    Publication date: September 13, 2018
    Inventors: Eric Fogleman, Sheng Ye, Xuefeng Chen, Kok Lim Chan
  • Publication number: 20180262990
    Abstract: Methods and systems for providing reduced bandwidth acquisition latency may comprise communicating a reservation request for bandwidth allocation for devices operating under a wired network protocol, where the reservation request may be sent by wired network devices via a wireless network protocol over a wireless network. Bandwidth may be allocated in the wired network for the requesting devices by a network controller. Data may be communicated with the requesting devices via the wired network. The wired network communication protocol may comprise a multimedia over cable alliance (MoCA) standard. The wireless protocol may comprise an IEEE 802.11x standard, a Bluetooth standard, and/or any non-public network protocol. The communication of the reservation request via the wireless protocol may decrease a latency of the wired network. A medium access plan (MAP) may be generated by the network controller based on the reservation request and may comprise a bandwidth allocation for the requesting devices.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Inventors: James Qiu, Sridhar Ramesh, Sheng Ye, Curtis Ling
  • Patent number: 10072135
    Abstract: A curable composition having a polythiol; at least one unsaturated compound comprising two or more carbon-carbon double bonds, carbon-carbon triple bonds, or a combination thereof; and a dye compound represented by formula: A crosslinked composition prepared from the curable composition, a method for indicating curing in a curable composition, and a method of stabilizing a curable composition comprising a polythiol and at least one unsaturated compound comprising two or more carbon-carbon double bonds, carbon-carbon triple bonds, or a combination thereof are also disclosed.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 11, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Sheng Ye, Kathleen S. Shafer, Michael S. Wendland, Jonathan D. Zook, Susan E. DeMoss
  • Publication number: 20180254032
    Abstract: The present disclosure provides a packaging structure of acoustic absorbent. The packaging structure of acoustic absorbent, includes a housing with an accommodating cavity, the housing including a bottom wall and a warding wall extending from the bottom wall; acoustic absorbent filling the accommodating cavity; a welding bracket; and an air-permeable isolator located between the warding wall and the welding bracket for packaging the acoustic absorbent inside the accommodating cavity. The air-permeable isolator and the welding bracket are fixed through ultrasonic welding. In addition, the present disclosure also provide a speaker box using the packaging structure of acoustic absorbent disclosed.
    Type: Application
    Filed: July 11, 2017
    Publication date: September 6, 2018
    Inventors: Jie Zhu, Bin Zhao, Sheng Ye, Minmin Chen
  • Patent number: 10063266
    Abstract: Methods and systems for a baseband cross-bar may comprise receiving one or more radio frequency (RF) signals in a wireless communication device via antennas coupled to a plurality of receiver paths in the wireless device. The received RF signals may be converted to baseband frequencies. One or more of the down-converted signals may be coupled to receiver paths utilizing a baseband cross-bar. The baseband cross-bar may comprise a plurality of switches, which may comprise CMOS transistors. In-phase and quadrature signals may be processed in the one or more of the plurality of receiver paths. The one or more RF signals comprise cellular signals and/or global navigation satellite signals. A single-ended received RF signal may be converted to a differential signal in one or more of the plurality of receiver paths. The baseband cross-bar may be controlled utilizing a reduced instruction set computing (RISC) processor.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: August 28, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Raja Pullela, Sheng Ye, Morten Damgaard