Patents by Inventor Sheng-Yuan Hsueh
Sheng-Yuan Hsueh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250194232Abstract: A method for fabricating a semiconductor device includes the steps of first providing a substrate having a first NMOS region, a first PMOS region, a second NMOS region, a second PMOS region, and a MOS capacitor region, forming a fin NMOS transistor on the first NMOS region, forming a fin PMOS transistor on the first PMOS region, forming a planar NMOS transistor on the second NMOS region, forming a planar PMOS transistor on the second PMOS region, and forming a planar MOS capacitor on the MOS capacitor region.Type: ApplicationFiled: February 20, 2025Publication date: June 12, 2025Applicant: United Microelectronics Corp.Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Chih-Kai Kang, Chun-Hsien Lin, Chi-Horn Pai
-
Publication number: 20250176208Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type; a well region of the first conductivity type in the semiconductor substrate; and a fin disposed on the semiconductor substrate within the well region. The fin extends along a first direction. The fin includes a first portion and a second portion that is contiguous with the first portion. The first portion includes a counter-doping region having dopants of a second conductivity type. A gate extends over the fin along a second direction. The gate overlaps with the first portion of the fin and does not overlap with the second portion of the fin.Type: ApplicationFiled: January 3, 2024Publication date: May 29, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Wen-Kai Lin, Kuo-Hsing Lee, Guan-Kai Huang, Chih-Kai Kang, Yung-Chen Chiu, Sheng-Yuan Hsueh, Yao-Jhan Wang
-
Publication number: 20250176197Abstract: A MOS capacitor includes a substrate of a first conductivity type including a fin surrounded by an isolation region. The fin protrudes from a top surface of the isolation region. A counter-doping region of a second conductivity type is disposed in the fin and serves as a first electrode plate of the MOS capacitor. A capacitor dielectric layer covers a sidewall and a top surface of the fin. A metal gate covers the capacitor dielectric layer and serves as a second electrode plate of the MOS capacitor.Type: ApplicationFiled: November 25, 2024Publication date: May 29, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Hsin-Hsien Chen, Kuo-Hsing Lee, Chih-Kai Kang, Sheng-Yuan Hsueh
-
Publication number: 20250176175Abstract: A manufacturing method of an OTP memory capacitor structure is provided. The OTP memory capacitor structure includes a semiconductor substrate, a bottom electrode, a capacitor insulating layer and a metal electrode stack structure. The bottom electrode is provided on the semiconductor substrate. The capacitor insulating layer is provided on the bottom electrode. The metal electrode stack structure includes a metal layer, an insulating sacrificial layer and a capping layer stacked in sequence. The metal layer is provided on the capacitor insulating layer and is used as a top electrode. The insulating sacrificial layer is provided between the metal layer and the capping layer. By the provision of the insulating sacrificial layer, the bottom electrode formed first can be prevented from being damaged by subsequent etching and other processes, so that the OTP memory capacitor structure has better electrical characteristics.Type: ApplicationFiled: January 23, 2025Publication date: May 29, 2025Inventors: KUO-HSING LEE, Po-Wen Su, Chien-Liang Wu, Sheng-Yuan Hsueh
-
Publication number: 20250142815Abstract: A semiconductor device includes a substrate having a medium-voltage (MV) region and an one time programmable (OTP) capacitor region, a MV device on the MV region, and an OTP capacitor on the OTP capacitor region. Preferably, the MV device includes a first gate dielectric layer on the substrate, a first gate electrode on the first gate dielectric layer, and a shallow trench isolation (STI) adjacent to two sides of the first gate electrode. The OTP capacitor includes a fin-shaped structure on the substrate, a doped region in the fin-shaped structure, a second gate dielectric layer on the doped region, and a second gate electrode on the second gate dielectric layer.Type: ApplicationFiled: November 27, 2023Publication date: May 1, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Chang-Yih Chen, Kuo-Hsing Lee, Chun-Hsien Lin, Wen-Chieh Chang, Kun-Szu Tseng, Sheng-Yuan Hsueh, Yao-Jhan Wang
-
Publication number: 20250142849Abstract: The invention provides a capacitor structure with a fin structure, which comprises a fin structure located on a substrate, a lower electrode layer, a high dielectric constant layer and an upper electrode layer stacked on the fin structure in sequence, and an ion doped region located in the substrate below the fin structure, and a top surface of the ion doped region is aligned with a bottom surface of the fin structure.Type: ApplicationFiled: November 20, 2023Publication date: May 1, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Hsin-Hsien Chen, Kuo-Hsing Lee, Chih-Kai Kang, Sheng-Yuan Hsueh
-
Publication number: 20250113523Abstract: A method for fabricating a semiconductor device includes the steps of first providing a substrate having a high electron mobility transistor (HEMT) region and a capacitor region, forming a buffer layer on the substrate, forming a mesa isolation on the HEMT region, forming a HEMT on the mesa isolation, and then forming a capacitor on the capacitor region. Preferably, a bottom electrode of the capacitor contacts the buffer layer directly.Type: ApplicationFiled: December 13, 2024Publication date: April 3, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Chien-Liang Wu, Kuo-Yu Liao
-
Publication number: 20250107101Abstract: A semiconductor device includes a substrate having a magnetic tunneling junction (MTJ) region and a logic region, a magnetic tunneling junction (MTJ) on the MTJ region and a first metal interconnection on the MTJ. Preferably, a top view of the MTJ includes a circle and a top view of the first metal interconnection includes an ellipse overlapping the circle.Type: ApplicationFiled: December 10, 2024Publication date: March 27, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Ting-Hsiang Huang, Yi-Chung Sheng, Sheng-Yuan Hsueh, Kuo-Hsing Lee, Chih-Kai Kang
-
Patent number: 12261169Abstract: A method for fabricating a semiconductor device includes the steps of first providing a substrate having a first NMOS region, a first PMOS region, a second NMOS region, a second PMOS region, and a MOS capacitor region, forming a fin NMOS transistor on the first NMOS region, forming a fin PMOS transistor on the first PMOS region, forming a planar NMOS transistor on the second NMOS region, forming a planar PMOS transistor on the second PMOS region, and forming a planar MOS capacitor on the MOS capacitor region.Type: GrantFiled: April 29, 2022Date of Patent: March 25, 2025Assignee: UNITED MICROELECTRONICS CORP.Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Chih-Kai Kang, Chun-Hsien Lin, Chi-Horn Pai
-
Publication number: 20250089281Abstract: Provided are a semiconductor structure and a manufacturing method thereof. The semiconductor structure includes a substrate including a fin portion, first and second doped regions having a first conductive type, first and second contacts, and first and second metal silicide layers. The fin portion protrudes from a surface of the substrate. The first doped region is disposed in the fin portion. The second doped region is disposed in the fin portion and connected to the first doped region. A doping concentration of the second doped region is greater than that of the first doped region. The first contact is disposed on the first doped region. The second contact is disposed on the second doped region. The first metal silicide layer is disposed between the first contact and the first doped region. The second metal silicide layer is disposed between the second contact and the second doped region.Type: ApplicationFiled: October 15, 2023Publication date: March 13, 2025Applicant: United Microelectronics Corp.Inventors: Wen-Kai Lin, Sheng-Yuan Hsueh, Kuo-Hsing Lee, Chih-Kai Kang
-
Patent number: 12245424Abstract: An OTP memory capacitor structure includes a semiconductor substrate, a bottom electrode, a capacitor insulating layer and a metal electrode stack structure. The bottom electrode is provided on the semiconductor substrate. The capacitor insulating layer is provided on the bottom electrode. The metal electrode stack structure includes a metal layer, an insulating sacrificial layer and a capping layer stacked in sequence. The metal layer is provided on the capacitor insulating layer and is used as a top electrode. The insulating sacrificial layer is provided between the metal layer and the capping layer. A manufacturing method of the OTP memory capacitor structure is also provided. By the provision of the insulating sacrificial layer, the bottom electrode formed first can be prevented from being damaged by subsequent etching and other processes, so that the OTP memory capacitor structure has better electrical characteristics.Type: GrantFiled: December 7, 2021Date of Patent: March 4, 2025Assignee: UNITED MICROELECTRONICS CORPORATIONInventors: Kuo-Hsing Lee, Po-Wen Su, Chien-Liang Wu, Sheng-Yuan Hsueh
-
Publication number: 20250071983Abstract: A method for fabricating a semiconductor device includes the steps of first providing a substrate having a transistor region and an one time programmable (OTP) capacitor region, forming a first fin-shaped structure on the transistor region and a second fin-shaped structure on the OTP capacitor region, and then performing an oxidation process to form a gate oxide layer on the first fin-shaped structure and the second fin-shaped structure. Preferably, the first fin-shaped structure and the second fin-shaped structure have different shapes under a cross-section perspective.Type: ApplicationFiled: September 24, 2023Publication date: February 27, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Yung-Chen Chiu, Chih-Kai Kang, Wen-Kai Lin
-
Publication number: 20250072015Abstract: A method for fabricating a semiconductor device includes the steps of first providing a substrate having a non-metal-oxide semiconductor capacitor (non-MOSCAP) region and a MOSCAP region, forming a fin-shaped structure on the MOSCAP region, forming a shallow trench isolation (STI) around the substrate and the fin-shaped structure, performing a first etching process to remove part of the STI on the MOSCAP region, and then performing a second etching process to remove part of the STI on the non-MOSCAP region and the MOSCAP region.Type: ApplicationFiled: September 20, 2023Publication date: February 27, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Chang-Yih Chen, Kuo-Hsing Lee, Chun-Hsien Lin, Kun-Szu Tseng, Sheng-Yuan Hsueh, Yao-Jhan Wang
-
Publication number: 20250063803Abstract: A method for fabricating a semiconductor device includes the steps of first providing a substrate having a non-metal-oxide semiconductor capacitor (non-MOSCAP) region and a MOSCAP region, forming a first fin-shaped structure on the MOSCAP region, performing a monolayer doping (MLD) process on the first fin-shaped structure, and then performing an anneal process for driving dopants into the first fin-shaped structure. Preferably, the MLD process is further accomplished by first performing a wet chemical doping process on the first fin-shaped structure and then forming a cap layer on the non-MOSCAP region and the MOSCAP region.Type: ApplicationFiled: September 14, 2023Publication date: February 20, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Chang-Yih Chen, Kuo-Hsing Lee, Chun-Hsien Lin, Kun-Szu Tseng, Sheng-Yuan Hsueh, Yao-Jhan Wang
-
Publication number: 20250040148Abstract: A magnetoresistive random access memory (MRAM) includes a first transistor and a second transistor on a substrate, a source line coupled to a first source/drain region of the first transistor, and a first metal interconnection coupled to a second source/drain region of the first transistor. Preferably, the first metal interconnection is extended to overlap the first transistor and the second transistor and the first metal interconnection further includes a first end coupled to the second source/drain region of the first transistor and a second end coupled to a magnetic tunneling junction (MTJ).Type: ApplicationFiled: October 16, 2024Publication date: January 30, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Te-Wei Yeh, Chien-Liang Wu
-
Patent number: 12206018Abstract: A method for fabricating a semiconductor device includes the steps of first providing a substrate having a high electron mobility transistor (HEMT) region and a capacitor region, forming a buffer layer on the substrate, forming a mesa isolation on the HEMT region, forming a HEMT on the mesa isolation, and then forming a capacitor on the capacitor region. Preferably, a bottom electrode of the capacitor contacts the buffer layer directly.Type: GrantFiled: March 24, 2024Date of Patent: January 21, 2025Assignee: UNITED MICROELECTRONICS CORP.Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Chien-Liang Wu, Kuo-Yu Liao
-
Patent number: 12200947Abstract: A semiconductor device includes a substrate having a magnetic tunneling junction (MTJ) region and a logic region, a magnetic tunneling junction (MTJ) on the MTJ region and a first metal interconnection on the MTJ. Preferably, a top view of the MTJ includes a circle and a top view of the first metal interconnection includes an ellipse overlapping the circle.Type: GrantFiled: December 26, 2023Date of Patent: January 14, 2025Assignee: UNITED MICROELECTRONICS CORP.Inventors: Ting-Hsiang Huang, Yi-Chung Sheng, Sheng-Yuan Hsueh, Kuo-Hsing Lee, Chih-Kai Kang
-
Publication number: 20250014661Abstract: A bit cell structure for one-time-programming is provided in the present invention, including a first doped region in a substrate and electrically connected to a source line, a second doped region in the substrate and provided with a source and a drain, wherein the drain is electrically connected with a bit line, a doped channel region in the substrate with a first part and a second part connecting respectively to the first doped region and the source of second doped region in a first direction, and a width of the first part in a second direction perpendicular to the first direction is less than a width of the second part and less than a width of the first doped region, and a word line traversing over the second doped region and between the source and drain.Type: ApplicationFiled: September 19, 2024Publication date: January 9, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Chi-Horn Pai, Chih-Kai Kang
-
Publication number: 20240429228Abstract: A method of manufacturing a resistor-transistor-logic circuit with GaN structures, including steps of forming a GaN layer, an AlGaN barrier layer and a p-type doped GaN capping layer on a substrate, patterning the p-type doped GaN capping layer into multiple p-type doped GaN capping patterns, wherein the GaN layer under parts of the p-type doped GaN capping patterns is converted into gate depletion regions, and the GaN layer not covered by the p-type doped GaN capping patterns in a resistor region functions as 2DEG resistors, forming a passivation layer on the GaN layer and the p-type doped GaN capping patterns, forming multiple sources and drains on the GaN layer, and forming multiple gates on the p-type doped GaN capping patterns, wherein the gates, sources and drains in a high-voltage device region constitute high-voltage HEMTs, and the gates, sources and drains in a low-voltage device region constitute low-voltage logic FETs.Type: ApplicationFiled: September 9, 2024Publication date: December 26, 2024Applicant: UNITED MICROELECTRONICS CORP.Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Chien-Liang Wu, Te-Wei Yeh, Yi-Chun Chen
-
Publication number: 20240397689Abstract: A static random access memory (SRAM) includes a first memory cell. The first memory cell includes: a first pull-down transistor, a first pull-up transistor, a second pull-up transistor, and a second pull-down transistor arranged on a first segment of a first fin, a first segment of a second fin, a first segment of a third fin and a first segment of a fourth fin of a substrate, respectively. The first memory cell further includes a first diode and a second diode. The first diode includes a first conductive feature in contact with a top surface and multiple upper sidewalls of a first end of the first segment of the first fin. The second diode includes a second conductive feature in contact with a top surface and multiple upper sidewalls of a second end of the first segment of the fourth fin.Type: ApplicationFiled: June 20, 2023Publication date: November 28, 2024Applicant: United Microelectronics Corp.Inventors: Hsin-Hsien Chen, Sheng-Yuan Hsueh, Chih-Kai Kang, Kuo-Hsing Lee