Patents by Inventor Shenlin Chen

Shenlin Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040036097
    Abstract: A dual-sided HSG capacitor and a method of fabrication are disclosed. A thin native oxide layer is formed between a doped polycrystalline layer and a layer of hemispherical grained polysilicon (HSG) as part of a dual-sided lower capacitor electrode. Prior to the dielectric formation, the lower capacitor electrode may be optionally annealed to improve capacitance.
    Type: Application
    Filed: August 22, 2002
    Publication date: February 26, 2004
    Inventors: Er-Xuan Ping, Shenlin Chen
  • Patent number: 6693007
    Abstract: The invention includes a method of forming a capacitor electrode. A sacrificial material sidewall is provided to extend at least partially around an opening. A first silicon-containing material is formed within the opening to partially fill the opening, and is doped with conductivity-enhancing dopant. A second silicon-containing material is formed within the partially filled opening, and is provided to be less heavily doped with conductivity-enhancing dopant than is the first silicon-containing material. At least some of the second silicon-containing material is converted into hemispherical grain silicon, and at least some of the sacrificial material sidewall is removed. The invention also encompasses methods of forming capacitors and capacitor assemblies incorporating the above-described capacitor electrode. Further, the invention encompasses capacitor assemblies and capacitor structures.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: February 17, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Shenlin Chen, Er-Xuan Ping
  • Publication number: 20030075754
    Abstract: The invention includes a method of forming a capacitor electrode. A sacrificial material sidewall is provided to extend at least partially around an opening. A first silicon-containing material is formed within the opening to partially fill the opening, and is doped with conductivity-enhancing dopant. A second silicon-containing material is formed within the partially filled opening, and is provided to be less heavily doped with conductivity-enhancing dopant than is the first silicon-containing material. At least some of the second silicon-containing material is converted into hemispherical grain silicon, and at least some of the sacrificial material sidewall is removed. The invention also encompasses methods of forming capacitors and capacitor assemblies incorporating the above-described capacitor electrode. Further, the invention encompasses capacitor assemblies and capacitor structures.
    Type: Application
    Filed: November 21, 2002
    Publication date: April 24, 2003
    Inventors: Shenlin Chen, Er-Xuan Ping
  • Publication number: 20030034514
    Abstract: The invention includes a method of forming a capacitor electrode. A sacrificial material sidewall is provided to extend at least partially around an opening. A first silicon-containing material is formed within the opening to partially fill the opening, and is doped with conductivity-enhancing dopant. A second silicon-containing material is formed within the partially filled opening, and is provided to be less heavily doped with conductivity-enhancing dopant than is the first silicon-containing material. At least some of the second silicon-containing material is converted into hemispherical grain silicon, and at least some of the sacrificial material sidewall is removed. The invention also encompasses methods of forming capacitors and capacitor assemblies incorporating the above-described capacitor electrode. Further, the invention encompasses capacitor assemblies and capacitor structures.
    Type: Application
    Filed: February 13, 2002
    Publication date: February 20, 2003
    Inventors: Shenlin Chen, Er-Xuan Ping
  • Publication number: 20030034513
    Abstract: The invention includes a method of forming a capacitor electrode. A sacrificial material sidewall is provided to extend at least partially around an opening. A first silicon-containing material is formed within the opening to partially fill the opening, and is doped with conductivity-enhancing dopant. A second silicon-containing material is formed within the partially filled opening, and is provided to be less heavily doped with conductivity-enhancing dopant than is the first silicon-containing material. At least some of the second silicon-containing material is converted into hemispherical grain silicon, and at least some of the sacrificial material sidewall is removed. The invention also encompasses methods of forming capacitors and capacitor assemblies incorporating the above-described capacitor electrode. Further, the invention encompasses capacitor assemblies and capacitor structures.
    Type: Application
    Filed: February 13, 2002
    Publication date: February 20, 2003
    Inventors: Shenlin Chen, Er-Xuan Ping
  • Publication number: 20030034515
    Abstract: The invention includes a method of forming a capacitor electrode. A sacrificial material sidewall is provided to extend at least partially around an opening. A first silicon-containing material is formed within the opening to partially fill the opening, and is doped with conductivity-enhancing dopant. A second silicon-containing material is formed within the partially filled opening, and is provided to be less heavily doped with conductivity-enhancing dopant than is the first silicon-containing material. At least some of the second silicon-containing material is converted into hemispherical grain silicon, and at least some of the sacrificial material sidewall is removed. The invention also encompasses methods of forming capacitors and capacitor assemblies incorporating the above-described capacitor electrode. Further, the invention encompasses capacitor assemblies, and capacitor structures.
    Type: Application
    Filed: September 3, 2002
    Publication date: February 20, 2003
    Inventors: Shenlin Chen, Er-Xuan Ping
  • Patent number: 6458652
    Abstract: The invention includes a method of forming a capacitor electrode. A sacrificial material sidewall is provided to extend at least partially around an opening. A first silicon-containing material is formed within the opening to partially fill the opening, and is doped with conductivity-enhancing dopant. A second silicon-containing material is formed within the partially filled opening, and is provided to be less heavily doped with conductivity-enhancing dopant than is the first silicon-containing material. At least some of the second silicon-containing material is converted into hemispherical grain silicon, and at least some of the sacrificial material sidewall is removed. The invention also encompasses methods of forming capacitors and capacitor assemblies incorporating the above-described capacitor electrode. Further, the invention encompasses capacitor assemblies and capacitor structures.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: October 1, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Shenlin Chen, Er-Xuan Ping
  • Publication number: 20020025650
    Abstract: Structures and methods for making a semiconductor structure are discussed. The semiconductor structure includes a rough surface having protrusions formed from an undoped silicon film. If the semiconductor structure is a capacitor, the protrusions help to increase the capacitance of the capacitor. The semiconductor structure also includes a relatively smooth surface abutting the rough surface, wherein the relatively smooth surface is formed from a polycrystalline material.
    Type: Application
    Filed: September 26, 2001
    Publication date: February 28, 2002
    Inventors: Randhir P.S. Thakur, Garry A. Mercaldi, Michael Nuttall, Shenlin Chen, Er-Xuan Ping