Patents by Inventor Shepard D. Johnson

Shepard D. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8809734
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: August 19, 2014
    Assignee: Electron Scientific Industries, Inc.
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20130200050
    Abstract: The present invention relates to the field of laser processing methods and systems, and specifically, to laser processing methods and systems for laser processing multi-material devices. Systems and methods may utilize high speed deflectors to improve processing energy window and/or improve processing speed. In some embodiments, a deflector is used for non-orthogonal scanning of beam spots. In some embodiment, a deflector is used to implement non-synchronous processing of target structures.
    Type: Application
    Filed: September 10, 2012
    Publication date: August 8, 2013
    Applicant: GSI GROUP CORPORATION
    Inventors: Jonathan S. Ehrmann, Joseph J. Griffiths, James J. Cordingley, Donald J. Svetkoff, Shepard D. Johnson, Michael Plotkin
  • Patent number: 8329600
    Abstract: A method, system and scan lens for use therein are provided for high-speed, laser-based, precise laser trimming at least one electrical element along a trim path. The method includes generating a pulsed laser output with a laser, the output having one or more laser pulses at a repetition rate. A fast rise/fall time, pulse-shaped q-switched laser or an ultra-fast laser may be used. Beam shaping optics may be used to generate a flat-top beam profile. Each laser pulse has a pulse energy, a laser wavelength within a range of laser wavelengths, and a pulse duration. The wavelength is short enough to produce desired short-wavelength benefits of small spot size, tight tolerance, high absorption and reduced or eliminated heat-affected zone (HAZ) along the trim path, but not so short so as to cause microcracking. In this way, resistance drift after the trimming process is reduced.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: December 11, 2012
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Jonathan S. Ehrmann, Joseph V. Lento, Bruce L. Couch, Yun Fee Chu, Shepard D. Johnson
  • Publication number: 20120276754
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Application
    Filed: July 3, 2012
    Publication date: November 1, 2012
    Applicant: GSI GROUP CORPORATION
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 8269137
    Abstract: The present invention relates to the field of laser processing methods and systems, and specifically, to laser processing methods and systems for laser processing multi-material devices. Systems and methods may utilize high speed deflectors to improve processing energy window and/or improve processing speed. In some embodiments, a deflector is used for non-orthogonal scanning of beam spots. In some embodiment, a deflector is used to implement non-synchronous processing of target structures.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: September 18, 2012
    Assignee: GSI Group Corporation
    Inventors: Jonathan S. Ehrmann, Joseph J. Griffiths, James J. Cordingley, Donald J. Svetkoff, Shepard D. Johnson, Michael Plotkin
  • Patent number: 8253066
    Abstract: Laser-based methods and systems for removing one or more target link structures of a circuit fabricated on a substrate includes generating a pulsed laser output at a predetermined wavelength less than an absorption edge of the substrate are provided. The laser output includes at least one pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond, the pulse duration being within a thermal laser processing range. The method also includes delivering and focusing the laser output onto the target link structure. The focused laser output has sufficient power density at a location within the target link structure to reduce the reflectivity of the target link structure and efficiently couple the focused laser output into the target link structure to remove the target link structure without damaging the substrate.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: August 28, 2012
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Donald V. Smart, James J. Cordingley, Joohan Lee, Donald J. Svetkoff, Shepard D. Johnson, Jonathan S. Ehrmann
  • Patent number: 8217304
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: July 10, 2012
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20120083049
    Abstract: A method is disclosed for on-the-fly processing at least one structure of a group of structures with a pulsed laser output, The method includes the steps of relatively positioning the group of structures and the pulsed laser output axis with non-constant velocity, and applying the pulsed laser output to the at least one structure of the group of structures during the step of relatively positioning the group of structures and the pulsed laser output axis with non-constant velocity.
    Type: Application
    Filed: November 23, 2011
    Publication date: April 5, 2012
    Applicant: GSI GROUP CORPORATION
    Inventors: Shepard D. Johnson, Bo Gu
  • Patent number: 8084706
    Abstract: A method is disclosed for on-the-fly processing at least one structure of a group of structures with a pulsed laser output. The method includes the steps of relatively positioning the group of structures and the pulsed laser output axis with non-constant velocity, and applying the pulsed laser output to the at least one structure of the group of structures during the step of relatively positioning the group of structures and the pulsed laser output axis with non-constant velocity.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: December 27, 2011
    Assignee: GSI Group Corporation
    Inventors: Shepard D. Johnson, Bo Gu
  • Publication number: 20110210105
    Abstract: Link processing systems and methods use controlled two dimensional deflection of a beam along an optical axis trajectory to process links positioned along and transverse to the trajectory during a pass of the optical axis along the trajectory. Predictive position calculations allow link blowing accuracy during constant velocity and accelerating trajectories.
    Type: Application
    Filed: December 22, 2010
    Publication date: September 1, 2011
    Applicant: GSI GROUP CORPORATION
    Inventors: Dmitry N. Romashko, Michael Plotkin, Jonathan S. Ehrmann, James J. Cordingley, Shepard D. Johnson
  • Patent number: 7955906
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: June 7, 2011
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrman, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7955905
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 7, 2011
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20110108534
    Abstract: A method and system for high-speed, precise micromachining an array of devices are disclosed wherein improved process throughput and accuracy, such as resistor trimming accuracy, are provided. Beam scanning and deflection are both used to distribute beam spots to elements of an array of elements for selective processing. The deflection can be performed with a solid state deflector.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 12, 2011
    Applicant: GSI GROUP CORPORATION
    Inventors: Bruce L. Couch, Jonathan S. Ehrmann, Yun Fee Chu, Joseph V. Lento, Shepard D. Johnson
  • Publication number: 20110062127
    Abstract: Laser-based methods and systems for removing one or more target link structures of a circuit fabricated on a substrate includes generating a pulsed laser output at a predetermined wavelength less than an absorption edge of the substrate are provided. The laser output includes at least one pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond, the pulse duration being within a thermal laser processing range. The method also includes delivering and focusing the laser output onto the target link structure. The focused laser output has sufficient power density at a location within the target link structure to reduce the reflectivity of the target link structure and efficiently couple the focused laser output into the target link structure to remove the target link structure without damaging the substrate.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 17, 2011
    Applicant: GSI GROUP CORPORATION
    Inventors: Bo Gu, Donald V. Smart, James J. Cordingley, Joohan Lee, Donald J. Svetkoff, Shepard D. Johnson, Jonathan S. Ehrmann
  • Patent number: 7871903
    Abstract: A method and system for high-speed, precise micromachining an array of devices are disclosed wherein improved process throughput and accuracy, such as resistor trimming accuracy, are provided. Beam scanning and deflection are both used to distribute beam spots to elements of an array of elements for selective processing. The deflection can be performed with a solid state deflector.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: January 18, 2011
    Assignee: GSI Group Corporation
    Inventors: Bruce L. Couch, Jonathan S. Erhmann, Yun Fee Chu, Joseph V. Lento, Shepard D. Johnson
  • Patent number: 7838794
    Abstract: Laser-based methods and systems for removing one or more target link structures of a circuit fabricated on a substrate includes generating a pulsed laser output at a predetermined wavelength less than an absorption edge of the substrate are provided. The laser output includes at least one pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond, the pulse duration being within a thermal laser processing range. The method also includes delivering and focusing the laser output onto the target link structure. The focused laser output has sufficient power density at a location within the target link structure to reduce the reflectivity of the target link structure and efficiently couple the focused laser output into the target link structure to remove the target link structure without damaging the substrate.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: November 23, 2010
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Donald V. Smart, James J. Cordingley, Joohan Lee, Donald J. Svetkoff, Shepard D. Johnson, Jonathan S. Ehrmann
  • Publication number: 20100140239
    Abstract: A method and system for high-speed, precise micromachining an array of devices are disclosed wherein improved process throughput and accuracy, such as resistor trimming accuracy, are provided. Beam scanning and deflection are both used to distribute beam spots to elements of an array of elements for selective processing. The deflection can be performed with a solid state deflector.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 10, 2010
    Applicant: GSI GROUP CORPORATION
    Inventors: Bruce L. Couch, Jonathan S. Ehrmann, Yun Fee Chu, Joseph V. Lento, Shepard D. Johnson
  • Patent number: 7723642
    Abstract: A laser-based method of removing a target link structure of a circuit fabricated on a substrate includes generating a pulsed laser output at a pre-determined wavelength less than an absorption edge of the substrate. The laser output includes at least one pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond, the pulse duration being within a thermal laser processing range. The method also includes delivering and focusing the laser output onto the target link structure. The focused laser output has sufficient power density at a location within the target structure to reduce the reflectivity of the target structure and efficiently couple the focused laser output into the target structure to remove the link without damaging the substrate.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 25, 2010
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Donald V. Smart, James J. Cordingley, Joohan Lee, Donald J. Svetkoff, Shepard D. Johnson, Jonathan S. Ehrmann
  • Patent number: 7666759
    Abstract: A method and system for high-speed, precise micromachining an array of devices are disclosed wherein improved process throughput and accuracy, such as resistor trimming accuracy, are provided. The number of resistance measurements are limited by using non-measurement cuts, using non-sequential collinear cutting, using spot fan-out parallel cutting, and using a retrograde scanning technique for faster collinear cuts. Non-sequential cutting is also used to manage thermal effects and calibrated cuts are used for improved accuracy. Test voltage is controlled to avoid resistor damage.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: February 23, 2010
    Assignee: GSI Lumonics Corporation
    Inventors: Bruce L. Couch, Jonathan S. Ehrmann, Joseph V. Lento, Shepard D. Johnson
  • Publication number: 20090321396
    Abstract: A method, system and scan lens for use therein are provided for high-speed, laser-based, precise laser trimming at least one electrical element along a trim path. The method includes generating a pulsed laser output with a laser, the output having one or more laser pulses at a repetition rate. A fast rise/fall time, pulse-shaped q-switched laser or an ultra-fast laser may be used. Beam shaping optics may be used to generate a flat-top beam profile. Each laser pulse has a pulse energy, a laser wavelength within a range of laser wavelengths, and a pulse duration. The wavelength is short enough to produce desired short-wavelength benefits of small spot size, tight tolerance, high absorption and reduced or eliminated heat-affected zone (HAZ) along the trim path, but not so short so as to cause microcracking. In this way, resistance drift after the trimming process is reduced.
    Type: Application
    Filed: July 8, 2009
    Publication date: December 31, 2009
    Applicant: GSI GROUP CORPORATION
    Inventors: Bo Gu, Jonathan S. Ehrmann, Joseph V. Lento, Bruce L. Couch, Yun Fee Chu, Shepard D. Johnson