Patents by Inventor Shiaw-Min Chen

Shiaw-Min Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240067939
    Abstract: The present disclosure provides methods, compositions, kits and systems for nucleic acid amplification. In some embodiments, nucleic acid amplification methods include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, nucleic acid amplification methods include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the nucleic acid amplification method employs an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel and/or in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: July 12, 2023
    Publication date: February 29, 2024
    Inventors: Chieh-Yuan LI, David RUFF, Shiaw-Min CHEN, Jennifer O'NEIL, Rachel KASINSKAS, Jonathan ROTHBERG, Bin LI, Kai Qin LAO
  • Patent number: 11725195
    Abstract: The present disclosure provides methods, compositions, kits and systems for nucleic acid amplification. In some embodiments, nucleic acid amplification methods include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, nucleic acid amplification methods include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the nucleic acid amplification method employs an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel and/or in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: August 15, 2023
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Shiaw-Min Chen, Jennifer O'Neil, Rachel Kasinskas, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Patent number: 11447815
    Abstract: Various embodiments of methods for analyzing proximity binding assay (PBA) data are disclosed. Proximity binding assays as a class of analyses offer the advantages of the sensitivity and specificity of biorecognition binding, along with the exponential signal amplification offered by a variety of oligonucleotide amplification reactions, such as the polymerase chain reaction (PCR). However, as various proximity binding assays have reaction kinetics governed by an additional step of the binding of a biorecognition probe (BRP) with a target molecule, there is a need for methods for the analysis of PBA data that are particularly suited to the unique characteristics of such data.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: September 20, 2022
    Assignee: Life Technologies Corporation
    Inventors: Shiaw-Min Chen, David W. Ruff, Harrison Leong
  • Publication number: 20210324460
    Abstract: This application relates to methods for ligating oligonucleotides having complementarity to a target nucleic acid, and amplifying the ligated oligonucleotides, where ligation and amplification occur in the same reaction mixture.
    Type: Application
    Filed: July 1, 2021
    Publication date: October 21, 2021
    Inventors: Shiaw-Min CHEN, Elana SWARTZMAN, David RUFF, Mark SHANNON, Julia LU, Stephen HENDRICKS
  • Publication number: 20210261929
    Abstract: The present disclosure provides methods, compositions, kits and systems for nucleic acid amplification. In some embodiments, nucleic acid amplification methods include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, nucleic acid amplification methods include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the nucleic acid amplification method employs an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel and/or in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: April 27, 2021
    Publication date: August 26, 2021
    Inventors: Chieh-Yuan LI, David RUFF, Shiaw-Min CHEN, Jennifer O'NEIL, Rachel KASINSKAS, Jonathan ROTHBERG, Bin LI, Kai Qin LAO
  • Patent number: 11072824
    Abstract: This application relates to methods for ligating oligonucleotides having complementarity to a target nucleic acid, and amplifying the ligated oligonucleotides, where ligation and amplification occur in the same reaction mixture.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: July 27, 2021
    Assignee: Life Technologies Corporation
    Inventors: Shiaw-Min Chen, Elana Swartzman, David Ruff, Mark Shannon, Julia Lu, Stephen Hendricks
  • Publication number: 20210180048
    Abstract: Methods, systems, kits and compositions are described for quality control and quantitation of nucleic acid libraries of double stranded nucleic acid libraries prior to massively parallel sequencing. Electrophoretic separation within a channel using a detectably labeled single stranded sizing ladder may be used to define the molecular weight range and amount of the double stranded nucleic acids.
    Type: Application
    Filed: January 5, 2021
    Publication date: June 17, 2021
    Applicant: Life Technologies Corporation
    Inventors: Stephan Berosik, Jianbo Gao, Shiaw-Min Chen, H. Michael Wenz
  • Patent number: 11001815
    Abstract: The present disclosure provides methods, compositions, kits and systems for nucleic acid amplification. In some embodiments, nucleic acid amplification methods include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, nucleic acid amplification methods include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the nucleic acid amplification method employs an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel and/or in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: May 11, 2021
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Shiaw-Min Chen, Jennifer O'Neil, Rachel Kasinskas, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Patent number: 10913944
    Abstract: Methods, systems, kits and compositions are described for quality control and quantitation of nucleic acid libraries of double stranded nucleic acid libraries prior to massively parallel sequencing. Electrophoretic separation within a channel using a detectably labeled single stranded sizing ladder may be used to define the molecular weight range and amount of the double stranded nucleic acids.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: February 9, 2021
    Assignee: Life Technologies Corporation
    Inventors: Stephan Berosik, Jianbo Gao, Shiaw-Min Chen, H. Michael Wenz
  • Patent number: 10858695
    Abstract: In some embodiments, provided are methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components. In some embodiments, methods for nucleic acid amplification comprise a amplifying at least one polynucleotide onto a surface under isothermal amplification conditions, optionally in the presence of a polymer.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: December 8, 2020
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Jennifer O'Neil, Rachel Kasinskas, Shiaw-Min Chen, Jonathan M. Rothberg, Bin Li, Kai Qin Lao
  • Publication number: 20200140855
    Abstract: Methods, systems, kits and compositions are described for quality control and quantitation of nucleic acid libraries of double stranded nucleic acid libraries prior to massively parallel sequencing. Electrophoretic separation within a channel using a detectably labeled single stranded sizing ladder may be used to define the molecular weight range and amount of the double stranded nucleic acids.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 7, 2020
    Inventors: Stephan Berosik, Jianbo Gao, Shiaw-Min Chen, H. Michael Wenz
  • Publication number: 20200048695
    Abstract: This application relates to methods for ligating oligonucleotides having complementarity to a target nucleic acid, and amplifying the ligated oligonucleotides, where ligation and amplification occur in the same reaction mixture.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Shiaw-Min CHEN, Elana SWARTZMAN, David RUFF, Mark SHANNON, Julia LU, Stephen HENDRICKS
  • Patent number: 10472671
    Abstract: This application relates to methods for ligating oligonucleotides having complementarity to a target nucleic acid, and amplifying the ligated oligonucleotides, where ligation and amplification occur in the same reaction mixture.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: November 12, 2019
    Assignee: Life Technologies Corporation
    Inventors: Shiaw-Min Chen, Elana Swartzman, David Ruff, Mark Shannon, Julia Lu, Stephen Hendricks
  • Publication number: 20190338258
    Abstract: The present disclosure provides methods, compositions, kits and systems for nucleic acid amplification. In some embodiments, nucleic acid amplification methods include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, nucleic acid amplification methods include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the nucleic acid amplification method employs an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel and/or in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: June 14, 2019
    Publication date: November 7, 2019
    Inventors: Chieh-Yuan LI, David RUFF, Shiaw-Min CHEN, Jennifer O'NEIL, Rachel KASINSKAS, Jonathan ROTHBERG, Bin LI, Kai Qin LAO
  • Publication number: 20190241942
    Abstract: Various embodiments of methods for analyzing proximity binding assay (PBA) data are disclosed. Proximity binding assays as a class of analyses offer the advantages of the sensitivity and specificity of biorecognition binding, along with the exponential signal amplification offered by a variety of oligonucleotide amplification reactions, such as the polymerase chain reaction (PCR). However, as various proximity binding assays have reaction kinetics governed by an additional step of the binding of a biorecognition probe (BRP) with a target molecule, there is a need for methods for the analysis of PBA data that are particularly suited to the unique characteristics of such data.
    Type: Application
    Filed: December 20, 2018
    Publication date: August 8, 2019
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Shiaw-Min CHEN, David W. RUFF, Harrison LEONG
  • Patent number: 10329544
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: June 25, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Chieh-Yuan Li, David Ruff, Shiaw-Min Chen, Jennifer O'Neil, Rachel Kasinskas, Jonathan Rothberg, Bin Li, Kai Qin Lao, Wolfgang Hinz
  • Publication number: 20190119738
    Abstract: In some embodiments, provided are methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components. In some embodiments, methods for nucleic acid amplification comprise a amplifying at least one polynucleotide onto a surface under isothermal amplification conditions, optionally in the presence of a polymer.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Chieh-Yuan LI, David RUFF, Jennifer O'NEIL, Rachel KASINSKAS, Shiaw-Min CHEN, Jonathan M. ROTHBERG, Bin LI, Kai Qin LAO
  • Patent number: 10208335
    Abstract: Various embodiments of methods for analyzing proximity binding assay (PBA) data are disclosed. Proximity binding assays as a class of analyses offer the advantages of the sensitivity and specificity of biorecognition binding, along with the exponential signal amplification offered by a variety of oligonucleotide amplification reactions, such as the polymerase chain reaction (PCR). However, as various proximity binding assays have reaction kinetics governed by an additional step of the binding of a biorecognition probe (BRP) with a target molecule, there is a need for methods for the analysis of PBA data that are particularly suited to the unique characteristics of such data.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: February 19, 2019
    Assignee: Life Technologies Corporation
    Inventors: Shiaw-Min Chen, David W. Ruff, Harrison M. Leong
  • Publication number: 20190048335
    Abstract: In some embodiments, the disclosure relates generally to methods, as well as related systems, compositions, kits, and apparatuses for any one or any combination of: conducting a library preparation method which generates a mixture of desirable template polynucleotides and non-desirable polynucleotide byproducts, amplifying the resulting library, enriching the desirable template polynucleotides, and sequencing the enriched template polynucleotides. The methods, as well as related systems, compositions, kits, and apparatuses, of the present teachings can be used to improve sequencing data.
    Type: Application
    Filed: March 17, 2017
    Publication date: February 14, 2019
    Inventors: Chieh-Yuan LI, David JOUN, Shiaw-Min CHEN
  • Patent number: 10113195
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: October 30, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Chieh-Yuan Li, David Ruff, Jennifer O'Neil, Rachel Kasinskas, Shiaw-Min Chen, Jonathan Rothberg, Bin Li, Kai Qin Lao