Patents by Inventor Shiaw-Min Chen

Shiaw-Min Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160272954
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: April 6, 2016
    Publication date: September 22, 2016
    Inventors: Chieh-Yuan LI, David RUFF, Shiaw-Min CHEN, Jennifer O'NEIL, Rachel KASINSKAS, Jonathan ROTHBERG, Bin LI, Kai Qin LAO, Wolfgang HINZ
  • Patent number: 9371557
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: June 21, 2016
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Jennifer O'Neil, Rachel Kasinskas, Shiaw-Min Chen, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Publication number: 20160153035
    Abstract: This application relates to methods for ligating oligonucleotides having complementarity to a target nucleic acid, and amplifying the ligated oligonucleotides, where ligation and amplification occur in the same reaction mixture.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 2, 2016
    Inventors: SHIAW-MIN CHEN, Elana Swartzman, David Ruff, Mark Shannon, Julia Lu, Stephen Hendricks
  • Patent number: 9334531
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: May 10, 2016
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Shiaw-Min Chen, Jennifer O'Neil, Rachel Kasinskas, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Patent number: 9309557
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 12, 2016
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Shiaw-Min Chen, Jennifer O'Neil, Rachel Kasinskas, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Patent number: 9309558
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: April 12, 2016
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Jennifer O'Neil, Rachel Kasinskas, Shiaw-Min Chen, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Publication number: 20160032375
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: July 1, 2015
    Publication date: February 4, 2016
    Inventors: Chieh-Yuan LI, David RUFF, Jennifer O'NEIL, Rachel KASINSKAS, Shiaw-Min CHEN, Jonathan ROTHBERG
  • Publication number: 20140147852
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 29, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Chieh-Yuan LI, David RUFF, Jennifer O'NEIL, Rachel KASINSKAS, Shiaw-Min CHEN, Jonathan ROTHBERG
  • Publication number: 20140148345
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 29, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Chieh-Yuan LI, David RUFF, Jennifer O'NEIL, Rachel KASINSKAS, Shiaw-Min CHEN, Jonathan ROTHBERG
  • Publication number: 20140080717
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 20, 2014
    Applicant: Life Technologies Corporation
    Inventors: Chieh-Yuan LI, David RUFF, Shiaw-Min CHEN, Jennifer O'NEIL, Rachel KASINSKAS, Jonathan ROTHBERG, Wolfgang HINZ
  • Publication number: 20130281307
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventors: Chieh-Yuan LI, David RUFF, Jennifer O'NEIL, Rachel KASINSKAS, Shiaw-Min CHEN, Jonathan ROTHBERG
  • Patent number: 8268558
    Abstract: The present teachings relate, among other things, to polynucleotide sequencing, fragment analysis and sample/lane tracking, and to polynucleotide sequencers and analyzers that employ optical detection techniques. Embodiments of the present teachings are described which include, for example, the addition of a calibration standard to a sequencing reaction. Information such as peak spacing and peak shape can be extracted from the standard.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: September 18, 2012
    Assignee: Applied Biosystems, LLC
    Inventors: Timothy Hunkapiller, Cheryl Heiner, Curtis Gehman, James Labrenz, Shiaw-Min Chen
  • Publication number: 20120196294
    Abstract: This application relates to methods for ligating oligonucleotides having complementarity to a target nucleic acid, and amplifying the ligated oligonucleotides, where ligation and amplification occur in the same reaction mixture.
    Type: Application
    Filed: January 17, 2012
    Publication date: August 2, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Shiaw-Min Chen, Elana Swartzman, David Ruff, Mark Shannon, Julia Lu, Stephen Hendricks
  • Publication number: 20110208441
    Abstract: Various embodiments of methods for analyzing proximity binding assay (PBA) data are disclosed. Proximity binding assays as a class of analyses offer the advantages of the sensitivity and specificity of biorecognition binding, along with the exponential signal amplification offered by a variety of oligonucleotide amplification reactions, such as the polymerase chain reaction (PCR). However, as various proximity binding assays have reaction kinetics governed by an additional step of the binding of a biorecognition probe (BRP) with a target molecule, there is a need for methods for the analysis of PBA data that are particularly suited to the unique characteristics of such data.
    Type: Application
    Filed: August 5, 2010
    Publication date: August 25, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Shiaw-Min Chen, David W. Ruff, Harrison M. Leong
  • Publication number: 20100311055
    Abstract: Compositions and methods for sequencing a template polynucleotide comprising a sequence of interest are provided herein. The compositions and methods employ at least one blocking probe that is designed to bind in a sequence-specific manner to a blocking sequence such that primer extension beyond the site where the blocking probe binds is reduced or prevented.
    Type: Application
    Filed: February 17, 2010
    Publication date: December 9, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Shiaw-Min CHEN, John Brandis
  • Publication number: 20100206730
    Abstract: The present teachings relate, among other things, to polynucleotide sequencing, fragment analysis and sample/lane tracking, and to polynucleotide sequencers and analyzers that employ optical detection techniques. Embodiments of the present teachings are described which include, for example, the addition of a calibration standard to a sequencing reaction. Information such as peak spacing and peak shape can be extracted from the standard.
    Type: Application
    Filed: September 17, 2009
    Publication date: August 19, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Timothy Hunkapiller, Cheryl Heiner, Curtis Gehman, James Labrenz, Shiaw-Min Chen
  • Patent number: 7700287
    Abstract: Compositions and methods for sequencing a template polynucleotide comprising a sequence of interest are provided herein. The compositions and methods employ at least one blocking probe that is designed to bind in a sequence-specific manner to a blocking sequence such that primer extension beyond the site where the blocking probe binds is reduced or prevented.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: April 20, 2010
    Assignee: Life Technologies Corporation
    Inventors: Shiaw-Min Chen, John W. Brandis
  • Patent number: 7593819
    Abstract: The present teachings relate, among other things, to polynucleotide sequencing, fragment analysis and sample/lane tracking, and to polynucleotide sequencers and analyzers that employ optical detection techniques. Embodiments of the present teachings are described which include, for example, the addition of a calibration standard to a sequencing reaction. Information such as peak spacing and peak shape can he extracted from the standard.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: September 22, 2009
    Assignee: Applied Biosystems, LLC
    Inventors: Timothy Hunkapiller, Cheryl Heiner, Curtis Gehman, James Labrenz, Shiaw-Min Chen
  • Patent number: 7534569
    Abstract: A method of generating a single-stranded nucleic acid molecule comprising (a) combining in a mixture under conditions suitable for a polymerase extension reaction, (i) a polymerase, (ii) an initial polynucleotide comprising a 5? portion and a 3? portion, wherein the polynucleotide forms the nucleic acid molecule 5? end; and (iii) a plurality of overlapping template oligonucleotides each having a 5? template portion and a 3? portion.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 19, 2009
    Assignee: Applied Biosystems, LLC
    Inventors: Chu-An Chang, Shiaw-Min Chen
  • Publication number: 20070254343
    Abstract: A method of generating a single-stranded nucleic acid molecule comprising (a) combining in a mixture under conditions suitable for a polymerase extension reaction, (i) a polymerase, (ii) an initial polynucleotide comprising a 5? portion and a 3? portion, wherein the polynucleotide forms the nucleic acid molecule 5? end; and (iii) a plurality of overlapping template oligonucleotides each having a 5? template portion and a 3? portion.
    Type: Application
    Filed: June 29, 2007
    Publication date: November 1, 2007
    Applicant: APPLERA CORPORATION
    Inventors: Chu-an Chang, Shiaw-Min Chen