Patents by Inventor Shigekazu Yamada
Shigekazu Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230056107Abstract: Some embodiments include apparatuses and methods using first and second data lines coupled to respective first and second memory cell strings; an access line shared by first and second memory cells of the first and second memory cell strings, respectively; and a control unit including circuitry to perform operations including charging the first data line to a first voltage during a first time interval of an operation performed on first and second memory cells; holding the second data line at a second voltage during the first time interval; charging the first data line to a third voltage during a second time interval of the operation; charging the second data line to a fourth voltage during the second time interval; and determining, during the second time interval of the operation, whether the first memory cell reaches a first threshold voltage and whether the second memory cell reaches a second threshold voltage.Type: ApplicationFiled: August 17, 2021Publication date: February 23, 2023Inventor: Shigekazu Yamada
-
Patent number: 11581043Abstract: Discussed herein are systems and methods for charging an access line to a non-volatile memory cell during a standby state, such as to prevent or mitigate standby-state charge loss. An embodiment of a memory device comprises a memory cell, a string driver circuit, and a charging circuit. The string driver circuit is coupled to the memory cell via a local word line, and has a common p-well. The charging circuit, in response to a voltage of a global word line of the memory device falling below a reference voltage during a standby state, couple a supply voltage to the common p-well of the string driver circuit to charge the global word line to a positive bias potential. The memory device includes a leakage compensation circuit to compensate for the junction leakage.Type: GrantFiled: September 17, 2021Date of Patent: February 14, 2023Assignee: Micron Technology, Inc.Inventor: Shigekazu Yamada
-
Publication number: 20220276806Abstract: A memory device includes a memory array comprising a plurality of planes, a primary plane driver circuit comprising components to support read operations, program operations, and erase operations on any of the plurality of planes, and a secondary plane driver circuit comprising components to support read operations on an associated one of the plurality of planes. The primary plane driver circuit is configured to perform a first read operation on a first plane of the plurality of planes and the secondary plane driver circuit is configured to perform a second read operation on a second plane of the plurality of planes concurrently with the first read operation.Type: ApplicationFiled: May 11, 2022Publication date: September 1, 2022Inventors: Kalyan Chakravarthy C. Kavalipurapu, Chang H. Siau, Shigekazu Yamada
-
Patent number: 11380401Abstract: Discussed herein are systems and methods for protecting against transistor degradation in a high-voltage (HV) shifter to transfer an input voltage to an access line, such as a global wordline. An embodiment of a memory device comprises memory cells and a HV shifter circuit that includes a signal transfer circuit, and first and second HV control circuits. The signal transfer circuit includes a P-channel transistor to transfer a high-voltage input to an access line. The first HV control circuit couples a bias voltage to the P-channel transistor for a first time period, and the second HV control circuit couples a stress-relief signal to the P-channel transistor for a second time period, after the first time period, to reduce degradation of the P-channel transistor. The transferred high voltage can be used to charge the access line to selectively read, program, or erase memory cells.Type: GrantFiled: April 26, 2021Date of Patent: July 5, 2022Assignee: Micron Technology, Inc.Inventor: Shigekazu Yamada
-
Publication number: 20220208274Abstract: Some embodiments include apparatuses and methods of operating the apparatuses. One of the apparatuses includes a first memory block including first control gates for respective first memory cells of the first memory block; a second memory block including second control gates for respective second memory cells of the second memory block; first diffusion regions coupled to the first control gates; second diffusion regions adjacent the first diffusion regions, the second diffusion regions coupled to the second control gates; and a circuit to apply a voltage to the second diffusion regions in a write operation performed on the first memory block.Type: ApplicationFiled: March 30, 2021Publication date: June 30, 2022Applicant: Micron Technology, Inc.Inventors: Go Shikata, Shigekazu Yamada
-
Patent number: 11355206Abstract: Discussed herein are systems and methods for compensating degradation of a transistor in a high-voltage (HV) shifter configured to transfer an input voltage to an access line, such as a global wordline. An embodiment of a memory device comprises a group of memory cells, and a HV shifter circuit including a signal transfer circuit and a compensator circuit. The signal transfer circuit includes a P-channel transistor to transfer a high-voltage input to an access line. The compensator circuit can provide a control signal to the signal transfer circuit by coupling a support voltage higher than a supply voltage (Vcc) to the signal transfer circuit for a specified time period to compensate for degradation of the P-channel transistor. The transferred high voltage is used to charge the access line to selectively read, program, or erase memory cells.Type: GrantFiled: March 12, 2021Date of Patent: June 7, 2022Assignee: Micron Technology, Inc.Inventor: Shigekazu Yamada
-
Patent number: 11354067Abstract: A memory device includes a memory array comprising a plurality of planes, a primary plane driver circuit comprising components to support read operations, program operations, and erase operations on any of the plurality of planes, and a secondary plane driver circuit comprising components to support read operations on an associated one of the plurality of planes. The primary plane driver circuit is configured to perform a first read operation on a first plane of the plurality of planes and the secondary plane driver circuit is configured to perform a second read operation on a second plane of the plurality of planes concurrently with the first read operation.Type: GrantFiled: August 5, 2020Date of Patent: June 7, 2022Assignee: MICRON TECHNOLOGY, INC.Inventors: Kalyan Chakravarthy C. Kavalipurapu, Chang H. Siau, Shigekazu Yamada
-
Publication number: 20220043597Abstract: A memory device includes a memory array comprising a plurality of planes, a primary plane driver circuit comprising components to support read operations, program operations, and erase operations on any of the plurality of planes, and a secondary plane driver circuit comprising components to support read operations on an associated one of the plurality of planes. The primary plane driver circuit is configured to perform a first read operation on a first plane of the plurality of planes and the secondary plane driver circuit is configured to perform a second read operation on a second plane of the plurality of planes concurrently with the first read operation.Type: ApplicationFiled: August 5, 2020Publication date: February 10, 2022Inventors: Kalyan Chakravarthy C. Kavalipurapu, Chang H. Siau, Shigekazu Yamada
-
Publication number: 20220005530Abstract: Discussed herein are systems and methods for charging an access line to a non-volatile memory cell during a standby state, such as to prevent or mitigate standby-state charge loss. An embodiment of a memory device comprises a memory cell, a string driver circuit, and a charging circuit. The string driver circuit is coupled to the memory cell via a local word line, and has a common p-well. The charging circuit, in response to a voltage of a global word line of the memory device falling below a reference voltage during a standby state, couple a supply voltage to the common p-well of the string driver circuit to charge the global word line to a positive bias potential. The memory device includes a leakage compensation circuit to compensate for the junction leakage.Type: ApplicationFiled: September 17, 2021Publication date: January 6, 2022Inventor: Shigekazu Yamada
-
Publication number: 20210375375Abstract: Devices and techniques are disclosed herein to provide a high-voltage bias signal in a standby state of the storage system without exceeding a limited maximum standby current allowance of the storage system. The high-voltage bias signal can enable a string driver circuit in the standby state to couple a global word line to a local word line, to provide a bias to, or sink a voltage from, a pillar of a string of memory cells of the storage system in the standby state, such as to reduce read disturbances in the storage system.Type: ApplicationFiled: August 16, 2021Publication date: December 2, 2021Inventors: Michele Piccardi, Xiaojiang Guo, Shigekazu Yamada
-
Patent number: 11127463Abstract: Discussed herein are systems and methods for charging an access line to a non-volatile memory cell during a standby state, such as to prevent or mitigate standby-state charge loss. An embodiment of a memory device comprises a memory cell, a string driver circuit, and a charging circuit. The string driver circuit is coupled to the memory cell via a local word line, and has a common p-well. The charging circuit, in response to a voltage of a global word line of the memory device falling below a reference voltage during a standby state, couple a supply voltage to the common p-well of the string driver circuit to charge the global word line to a positive bias potential. The memory device includes a leakage compensation circuit to compensate for the junction leakage.Type: GrantFiled: February 3, 2021Date of Patent: September 21, 2021Assignee: Micron Technology, Inc.Inventor: Shigekazu Yamada
-
Patent number: 11125819Abstract: A device includes a comparator, a reference signal node, a plurality of test signal nodes, and control logic. The reference signal node receives a reference signal. The reference signal node is coupled to a first input of the comparator. Each of the plurality of test signal nodes receives a corresponding test signal. The control logic is configured to initiate a comparison of each test signal to the reference signal via the comparator.Type: GrantFiled: February 20, 2020Date of Patent: September 21, 2021Assignee: Micron Technology, Inc.Inventor: Shigekazu Yamada
-
Patent number: 11094385Abstract: Devices and techniques are disclosed herein to provide a high-voltage bias signal in a standby state of the storage system without exceeding a limited maximum standby current allowance of the storage system. The high-voltage bias signal can enable a string driver circuit in the standby state to couple a global word line to a local word line, to provide a bias to, or sink a voltage from, a pillar of a string of memory cells of the storage system in the standby state, such as to reduce read disturbances in the storage system.Type: GrantFiled: July 30, 2020Date of Patent: August 17, 2021Assignee: Micron Technology, Inc.Inventors: Michele Piccardi, Xiaojiang Guo, Shigekazu Yamada
-
Publication number: 20210249084Abstract: Discussed herein are systems and methods for protecting against transistor degradation in a high-voltage (HV) shifter to transfer an input voltage to an access line, such as a global wordline. An embodiment of a memory device comprises memory cells and a HV shifter circuit that includes a signal transfer circuit, and first and second HV control circuits. The signal transfer circuit includes a P-channel transistor to transfer a high-voltage input to an access line. The first HV control circuit couples a bias voltage to the P-channel transistor for a first time period, and the second H V control circuit couples a stress-relief signal to the P-channel transistor for a second time period, after the first time period, to reduce degradation of the P-channel transistor. The transferred high voltage can be used to charge the access line to selectively read, program, or erase memory cells.Type: ApplicationFiled: April 26, 2021Publication date: August 12, 2021Inventor: Shigekazu Yamada
-
Publication number: 20210202016Abstract: Discussed herein are systems and methods for compensating degradation of a transistor in a high-voltage (HV) shifter configured to transfer an input voltage to an access line, such as a global wordline. An embodiment of a memory device comprises a group of memory cells, and a HV shifter circuit including a signal transfer circuit and a compensator circuit. The signal transfer circuit includes a P-channel transistor to transfer a high-voltage input to an access line. The compensator circuit can provide a control signal to the signal transfer circuit by coupling a support voltage higher than a supply voltage (Vcc) to the signal transfer circuit for a specified time period to compensate for degradation of the P-channel transistor. The transferred high voltage is used to charge the access line to selectively read, program, or erase memory cells.Type: ApplicationFiled: March 12, 2021Publication date: July 1, 2021Inventor: Shigekazu Yamada
-
Publication number: 20210158872Abstract: Discussed herein are systems and methods for charging an access line to a non-volatile memory cell during a standby state, such as to prevent or mitigate standby-state charge loss. An embodiment of a memory device comprises a memory cell, a string driver circuit, and a charging circuit. The string driver circuit is coupled to the memory cell via a local word line, and has a common p-well. The charging circuit, in response to a voltage of a global word line of the memory device falling below a reference voltage during a standby state, couple a supply voltage to the common p-well of the string driver circuit to charge the global word line to a positive bias potential. The memory device includes a leakage compensation circuit to compensate for the junction leakage.Type: ApplicationFiled: February 3, 2021Publication date: May 27, 2021Inventor: Shigekazu Yamada
-
Patent number: 10998050Abstract: Discussed herein are systems and methods for protecting against transistor degradation in a high-voltage (HV) shifter to transfer an input voltage to an access line, such as a global wordline. An embodiment of a memory device comprises memory cells and a HV shifter circuit that includes a signal transfer circuit, and first and second HV control circuits. The signal transfer circuit includes a P-channel transistor to transfer a high-voltage input to an access line. The first HV control circuit couples a bias voltage to the P-channel transistor for a first time period, and the second HV control circuit couples a stress-relief signal to the P-channel transistor for a second time period, after the first time period, to reduce degradation of the P-channel transistor. The transferred high voltage can be used to charge the access line to selectively read, program, or erase memory cells.Type: GrantFiled: March 9, 2020Date of Patent: May 4, 2021Assignee: Micron Technology, Inc.Inventor: Shigekazu Yamada
-
Patent number: 10957402Abstract: Discussed herein are systems and methods for compensating degradation of a transistor in a high-voltage (HV) shifter configured to transfer an input voltage to an access line, such as a global wordline. An embodiment of a memory device comprises a group of memory cells, and a HV shifter circuit including a signal transfer circuit and a compensator circuit. The signal transfer circuit includes a P-channel transistor to transfer a high-voltage input to an access line. The compensator circuit can provide a control signal to the signal transfer circuit by coupling a support voltage higher than a supply voltage (Vcc) to the signal transfer circuit for a specified time period to compensate for degradation of the P-channel transistor. The transferred high voltage is used to charge the access line to selectively read, program, or erase memory cells.Type: GrantFiled: January 28, 2019Date of Patent: March 23, 2021Assignee: Micron Technology, Inc.Inventor: Shigekazu Yamada
-
Patent number: 10950309Abstract: Semiconductor memory devices and methods include a flash memory cell array fabricated in a well, with memory cells in the same column connected to each other in series and connected to a respective bit line. The memory devices also include a column decoder, a data register buffer unit, a row decoder, an erase control unit, and an input/output buffer unit. In one or more embodiments, the erase control unit applies voltages to the well to erase the memory cells in a manner that avoids breaking down p-n junctions formed by transistors fabricated in the well. In another embodiment, high voltage transistors are used to selectively isolate the bit lines from and couple the bit lines to a peripheral circuit in pairs so that each high voltage transistor is shared by two bit lines.Type: GrantFiled: July 16, 2018Date of Patent: March 16, 2021Assignee: Micron Technology, Inc.Inventors: Shigekazu Yamada, Tomoharu Tanaka
-
Patent number: 10937501Abstract: Discussed herein are systems and methods for charging an access line to a nonvolatile memory cell during a standby state, such as to prevent or mitigate standby-state charge loss. An embodiment of a memory device comprises a memory cell, a string driver circuit, and a charging circuit. The string driver circuit is coupled to the memory cell via a local word line, and has a common p-well. The charging circuit, in response to a voltage of a global word line of the memory device falling below a reference voltage during a standby state, couple a supply voltage to the common p-well of the string driver circuit to charge the global word line to a positive bias potential. The memory device includes a leakage compensation circuit to compensate for the junction leakage.Type: GrantFiled: September 18, 2019Date of Patent: March 2, 2021Assignee: Micron Technology, Inc.Inventor: Shigekazu Yamada