Patents by Inventor Shigekazu Yamada

Shigekazu Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200049763
    Abstract: A device includes a comparator, a reference signal node electrically coupled to a first input of the comparator, a plurality of test signal nodes, a plurality of first select signal nodes, a first multiplexer coupled between the plurality of test signal nodes and the comparator, a plurality of latches, a plurality of second select signal nodes, and a second multiplexer coupled between an output of the comparator and the plurality of latches. Each first select signal node corresponds to a test signal node. The first multiplexer electrically couples one of the plurality of test signal nodes to a second input of the comparator in response to a corresponding first select signal. Each latch corresponds to a test signal node. Each second select signal node corresponds to a latch. The second multiplexer electrically couples the output of the comparator to an input of one of the plurality of latches in response to a corresponding second select signal.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 13, 2020
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Shigekazu Yamada
  • Publication number: 20200013467
    Abstract: Discussed herein are systems and methods for charging an access line to a non-volatile memory cell during a standby state, such as to prevent or mitigate standby-state charge loss. An embodiment of a memory device comprises a memory cell, a string driver circuit, and a charging circuit. The stringer driver circuit is coupled to the memory cell via a local word line, and has a common p-well. The charging circuit, in response to a voltage of a global word line of the memory device falling below a reference voltage during a standby state, couple a supply voltage to the common p-well of the string driver circuit to charge the global word line to a positive bias potential. The memory device includes a leakage compensation circuit to compensate for the junction leakage.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Inventor: Shigekazu Yamada
  • Publication number: 20200005876
    Abstract: Discussed herein are systems and methods for charging a bit line (BL) during programming of non-volatile memory cells. An embodiment of a memory device comprises a group of memory cells including a first memory cell coupled to a first BL and a second memory cell coupled to a second BL, and a BL charging circuit that provides an inhibit signal to the second BL in response to a control signal to program the first memory cell. To provide the inhibit signal, the BL charging circuit apply a supply voltage to the second BL for an initial wait time and, after the initial wait time, apply a higher voltage than the supply voltage, until the inhibit signal reaches a value of the supply voltage. The first memory cells is programmed in response to the established voltage on the second BL.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventor: Shigekazu Yamada
  • Patent number: 10510419
    Abstract: Discussed herein are systems and methods for charging a bit line (BL) during programming of non-volatile memory cells. An embodiment of a memory device comprises a group of memory cells including a first memory cell coupled to a first BL and a second memory cell coupled to a second BL, and a BL charging circuit that provides an inhibit signal to the second BL in response to a control signal to program the first memory cell. To provide the inhibit signal, the BL charging circuit apply a supply voltage to the second BL for an initial wait time and, after the initial wait time, apply a higher voltage than the supply voltage, until the inhibit signal reaches a value of the supply voltage. The first memory cells is programmed in response to the established voltage on the second BL.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: December 17, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Shigekazu Yamada
  • Patent number: 10510397
    Abstract: Integrated circuit devices include a first node, a second node, a transistor connected between the first node and the second node, a current path between a control gate of the transistor and the second node, and a controller configured to concurrently discharge a voltage level of the first node and a voltage level of the second node, monitor a representation of a voltage difference between the voltage level of the first node and a voltage level of the control gate of the transistor while discharging the voltage level of the first node and discharging the voltage level of the second node, activate the current path if the voltage difference is deemed to be greater than a first value, and deactivate the current path if the voltage difference is deemed to be less than a second value.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: December 17, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Shigekazu Yamada
  • Patent number: 10490292
    Abstract: Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatus and a data line coupled to the memory cell string. The memory cell string includes a pillar body associated with the memory cells. At least one of such apparatus can include a module configured to store information in a memory cell among memory cells and/or to determine a value of information stored in a memory cell among memory cells. The module can also be configured to apply a voltage having a positive value to the data line and/or a source to control a potential of the body. Other embodiments are described.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: November 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Han Zhao, Akira Goda, Krishna K. Parat, Aurelio Giancarlo Mauri, Haitao Liu, Toru Tanzawa, Shigekazu Yamada, Koji Sakui
  • Patent number: 10446236
    Abstract: Discussed herein are systems and methods for charging an access line to a non-volatile memory cell during a standby state, such as to prevent or mitigate standby-state charge loss. An embodiment of a memory device comprises a memory cell, a string driver circuit, and a charging circuit. The stringer driver circuit is coupled to the memory cell via a local word line, and has a common p-well. The charging circuit, in response to a voltage of a global word line of the memory device falling below a reference voltage during a standby state, couple a supply voltage to the common p-well of the string driver circuit to charge the global word line to a positive bias potential. The memory device includes a leakage compensation circuit to compensate for the junction leakage.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: October 15, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Shigekazu Yamada
  • Publication number: 20190287604
    Abstract: Integrated circuit devices include a first node, a second node, a transistor connected between the first node and the second node, a current path between a control gate of the transistor and the second node, and a controller configured to concurrently discharge a voltage level of the first node and a voltage level of the second node, monitor a representation of a voltage difference between the voltage level of the first node and a voltage level of the control gate of the transistor while discharging the voltage level of the first node and discharging the voltage level of the second node, activate the current path if the voltage difference is deemed to be greater than a first value, and deactivate the current path if the voltage difference is deemed to be less than a second value.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Shigekazu Yamada
  • Patent number: 10347320
    Abstract: Methods of operating a memory include concurrently discharging a voltage level of a data line and source of the memory, monitoring a representation of a voltage difference between a voltage level of a control gate of a transistor connected between the data line and the source and a voltage level of the data line, activating a current path between the control gate of the transistor and the source if the voltage difference is deemed to be greater than a first value, and deactivating the current path if the voltage difference is deemed to be less than a second value. Memory configured to perform such methods include comparators configured to monitor voltage nodes capacitively coupled to the data line and to the control gate of the transistor connected between the data line and the source, and a current path selectively connecting the control gate of the transistor to the source.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: July 9, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Shigekazu Yamada
  • Publication number: 20190206481
    Abstract: Methods of operating a memory include concurrently discharging a voltage level of a data line and source of the memory, monitoring a representation of a voltage difference between a voltage level of a control gate of a transistor connected between the data line and the source and a voltage level of the data line, activating a current path between the control gate of the transistor and the source if the voltage difference is deemed to be greater than a first value, and deactivating the current path if the voltage difference is deemed to be less than a second value. Memory configured to perform such methods include comparators configured to monitor voltage nodes capacitively coupled to the data line and to the control gate of the transistor connected between the data line and the source, and a current path selectively connecting the control gate of the transistor to the source.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 4, 2019
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Shigekazu Yamada
  • Publication number: 20190147966
    Abstract: Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatus and a data line coupled to the memory cell string. The memory cell string includes a pillar body associated with the memory cells. At least one of such apparatus can include a module configured to store information in a memory cell among memory cells and/or to determine a value of information stored in a memory cell among memory cells. The module can also be configured to apply a voltage having a positive value to the data line and/or a source to control a potential of the body. Other embodiments are described.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Inventors: Han Zhao, Akira Goda, Krishna K. Parat, Aurelio Giancarlo Mauri, Haitao Liu, Toru Tanzawa, Shigekazu Yamada, Koji Sakui
  • Patent number: 10170196
    Abstract: Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatus and a data line coupled to the memory cell string. The memory cell string includes a pillar body associated with the memory cells. At least one of such apparatus can include a module configured to store information in a memory cell among memory cells and/or to determine a value of information stored in a memory cell among memory cells. The module can also be configured to apply a voltage having a positive value to the data line and/or a source to control a potential of the body. Other embodiments are described.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: January 1, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Han Zhao, Akira Goda, Krishna K. Parat, Aurelio Giancarlo Mauri, Haitao Liu, Toru Tanzawa, Shigekazu Yamada, Koji Sakui
  • Publication number: 20180342299
    Abstract: Semiconductor memory devices and methods include a flash memory cell array fabricated in a well, with memory cells in the same column connected to each other in series and connected to a respective bit line. The memory devices also include a column decoder, a data register buffer unit, a row decoder, an erase control unit, and an input/output buffer unit. In one or more embodiments, the erase control unit applies voltages to the well to erase the memory cells in a manner that avoids breaking down p-n junctions formed by transistors fabricated in the well. In another embodiment, high voltage transistors are used to selectively isolate the bit lines from and couple the bit lines to a peripheral circuit in pairs so that each high voltage transistor is shared by two bit lines.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 29, 2018
    Applicant: Micron Technology, Inc.
    Inventors: Shigekazu Yamada, TOMOHARU TANAKA
  • Patent number: 10056149
    Abstract: Semiconductor memory devices and methods include a flash memory cell array fabricated in a well, with memory cells in the same column connected to each other in series and connected to a respective bit line. The memory devices also include a column decoder, a data register buffer unit, a row decoder, an erase control unit, and an input/output buffer unit. In one or more embodiments, the erase control unit applies voltages to the well to erase the memory cells in a manner that avoids breaking down p-n junctions formed by transistors fabricated in the well. In another embodiment, high voltage transistors are used to selectively isolate the bit lines from and couple the bit lines to a peripheral circuit in pairs so that each high voltage transistor is shared by two bit lines.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: August 21, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Shigekazu Yamada, Tomoharu Tanaka
  • Publication number: 20180114581
    Abstract: Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatus and a data line coupled to the memory cell string. The memory cell string includes a pillar body associated with the memory cells. At least one of such apparatus can include a module configured to store information in a memory cell among memory cells and/or to determine a value of information stored in a memory cell among memory cells. The module can also be configured to apply a voltage having a positive value to the data line and/or a source to control a potential of the body. Other embodiments are described.
    Type: Application
    Filed: December 20, 2017
    Publication date: April 26, 2018
    Inventors: Han Zhao, Akira Goda, Krishna K. Parat, Aurelio Giancarlo Mauri, Haitao Liu, Toru Tanzawa, Shigekazu Yamada, Koji Sakui
  • Patent number: 9881686
    Abstract: Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatus and a data line coupled to the memory cell string. The memory cell string includes a pillar body associated with the memory cells. At least one of such apparatus can include a module configured to store information in a memory cell among memory cells and/or to determine a value of information stored in a memory cell among memory cells. The module can also be configured to apply a voltage having a positive value to the data line and/or a source to control a potential of the body. Other embodiments are described.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: January 30, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Han Zhao, Akira Goda, Krishna K. Parat, Aurelio Giancarlo Mauri, Haitao Liu, Toru Tanzawa, Shigekazu Yamada, Koji Sakui
  • Publication number: 20170266722
    Abstract: A method for manufacturing a light alloy wheel that includes a substantially annular rim part and a disc part that is joined to one edge of the rim part on an inner side and is to be attached to an axle. The method includes a molten metal pouring step for pouring a light alloy molten metal from a sprue opened into a mold cavity formed into a shape of the rim part, and a forced cooling step for, after the molten metal pouring step, forcibly cooling the light alloy molten metal poured into the mold cavity formed into the shape of the rim part such that one predetermined cooling unit of a plurality of cooling units provided along an entire circumference on an outer side or an inner side of the mold cavity formed into the shape of the rim part is first operated and an other cooling unit thereof is then operated.
    Type: Application
    Filed: September 14, 2015
    Publication date: September 21, 2017
    Applicant: Hitachi Metals, Ltd.
    Inventors: Takeshi HARIMOTO, Tatsuya KOHNO, Shigekazu YAMADA
  • Patent number: 9704542
    Abstract: The present invention is a circuit and method for measuring leakage on the plurality of word lines in a memory device. In one embodiment, a memory device may include a leakage measurement circuit that is coupled to a plurality of word lines of the memory device. The leakage measurement circuit may be operable to generate a reference current and to determine whether a leakage current on one of the plurality of word lines is acceptable relative to the reference current. In another embodiment, a method may include determining whether leakage on one of a plurality of word lines of a memory device is allowable using a circuit in the memory device.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: July 11, 2017
    Assignee: Micron Technology, Inc.
    Inventor: Shigekazu Yamada
  • Patent number: 9697912
    Abstract: A first switch is closed to initialize a circuit by charging a capacitance of the circuit. A second switch is closed to initialize an amplifier in unity-gain configuration. The amplifier is capacitively coupled to the circuit. The first switch and the second switch are then opened to detect a leakage current of the circuit by detecting a change in an output voltage of the amplifier.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 4, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Feng Pan, Shigekazu Yamada
  • Publication number: 20170125106
    Abstract: Semiconductor memory devices and methods include a flash memory cell array fabricated in a well, with memory cells in the same column connected to each other in series and connected to a respective bit line. The memory devices also include a column decoder, a data register buffer unit, a row decoder, an erase control unit, and an input/output buffer unit. In one or more embodiments, the erase control unit applies voltages to the well to erase the memory cells in a manner that avoids breaking down p-n junctions formed by transistors fabricated in the well. In another embodiment, high voltage transistors are used to selectively isolate the bit lines from and couple the bit lines to a peripheral circuit in pairs so that each high voltage transistor is shared by two bit lines.
    Type: Application
    Filed: September 8, 2016
    Publication date: May 4, 2017
    Applicant: Micron Technology, Inc.
    Inventors: SHIGEKAZU YAMADA, TOMOHARU TANAKA