Patents by Inventor Shigemi Ohtsu

Shigemi Ohtsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7029607
    Abstract: A process for producing a polymer optical waveguide, including the steps of: preparing a mold; bringing into close contact with a cladding substrate which has good adhesiveness to the mold; introducing, by capillarity, a curable resin; and curing the introduced curable resin, wherein one through hole or multiple through holes arranged at regular intervals in a longitudinal direction of the core portion are opened to form the one or more resin input ports or one or more resin output ports in order for both the cut ends to be used as resin output portions; and after the curable resin is introduced into the concave portion, a resin pushing member is inserted into each of the one or more resin input ports and/or the one or more resin output ports, to thereby perform the step of introducing the curable resin into the concave portion of the mold by capillarity.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: April 18, 2006
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Patent number: 7024084
    Abstract: An electrodeposition solution comprising an electrodeposition material including at least an electrodepositive polymer material, which comprises hydrogen atoms, and capable of forming an electrodeposition film by depositing the electrodeposition material from the electrodeposition solution, wherein 10% to 90% of the hydrogen atoms are substituted by heavy hydrogen atoms and a transmission loss of the electrodeposition film to light in a wavelength region of 700 nm to 1,350 nm is no more than 1 dB/cm.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: April 4, 2006
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Eiichi Akutsu, Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda
  • Publication number: 20060024012
    Abstract: The present invention provides an optical waveguide including an optical waveguide core for transmitting optical signals, a plate-shaped clad portion containing the optical waveguide core therein, and at least one of a concave portion and a convex portion at an end surface portion of the clad portion which end surface portion is disposed near one end of the optical waveguide core; an optical waveguide ferrule having an opening portion for receiving an optical waveguide, and at least one of a convex portion and a convex portion having a concave portion on an inner surface thereof at one end of the opening portion; and an optical connector in which the optical waveguide is inserted in the opening portion of the optical waveguide ferrule.
    Type: Application
    Filed: February 17, 2005
    Publication date: February 2, 2006
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Kazutoshi Yatsuda, Keishi Shimizu, Shigemi Ohtsu, Eiichi Akutsu
  • Patent number: 6993233
    Abstract: A laminated polymer optical waveguide including two or more optical waveguide films each of which includes an optical waveguide core on a light-transmissive clad film, the two or more optical waveguide films being laminated on each other by using a clad-forming curable resin having a refractive index close to that of the light-transmissive clad film. The laminated polymer optical waveguide includes, at an end thereof, plural strip-shaped structures which each include at least one optical waveguide core and which can be each independently bent in the direction along which the optical waveguide films are laminated.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: January 31, 2006
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Patent number: 6990263
    Abstract: The present invention provides a connector-integrated type polymer optical waveguide, comprising: an optical waveguide including a film substrate for clad, an optical waveguide core provided on the film substrate, and a clad layer formed on side faces and a top face of the core; a pair of connector sleeves formed at positions at which the connector sleeves sandwich the optical waveguide core at least in one end portion of the polymer optical waveguide; and a rigid member for connector formation, wherein the film substrate for clad and the connector sleeves are fixed to the rigid member for connector formation in such a state that the center of the optical waveguide core and the center for connector sleeves are substantially on the same plane. The present invention also provides a method for producing the above-mentioned connector-integrated type polymer optical waveguide and a mold to be used for the method.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: January 24, 2006
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Publication number: 20060008224
    Abstract: The invention provides a laminated optical waveguide film in which a plurality of waveguide cores are formed, and a plurality of end surfaces at which the waveguide cores are exposed are formed, wherein, among the plurality of end surfaces, a first end surface has waveguide core end surfaces laminated in a thickness direction, and a second end surface has waveguide core end surfaces arranged in parallel. The invention also provides a method for producing the optical guide film, and an optical module using the optical guide film.
    Type: Application
    Filed: July 5, 2005
    Publication date: January 12, 2006
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Publication number: 20060002651
    Abstract: An optical waveguide module includes a light emitting element which outputs light, a light receiving element which monitors an output of the light emitting element, and an optical waveguide film having a waveguide core which has a notched portion having an optical path changing surface that changes an optical path of part of the light. The light emitting element is coupled to an end portion of the optical waveguide film, and the light receiving element is provided to face a position of the optical waveguide film from where the part of the light whose optical path has been changed by the optical path changing surface exits.
    Type: Application
    Filed: December 7, 2004
    Publication date: January 5, 2006
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Publication number: 20050286831
    Abstract: A polymeric optical waveguide module has: a light-emitting element; a polymeric optical waveguide film having a lower clad, a core, an upper clad, an optical path changing mirror surface provided at one end of the polymeric optical waveguide film and a guided light leakage portion on at least one of a lower surface of the core and an upper surface of the lower clad; and a monitoring light-receiving element that monitors light emitted from the light-emitting element. The light-emitting element, the polymeric optical waveguide film and the monitoring light-receiving element are aligned with each other so that the light emitted from the light-emitting element is reflected by the optical path changing mirror surface to be guided through the core and part of the light emitted from the light-emitting element is received by the monitoring light-receiving element via the guided light leakage portion.
    Type: Application
    Filed: November 19, 2004
    Publication date: December 29, 2005
    Inventors: Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Publication number: 20050248046
    Abstract: A polymer optical waveguide module has a submount, one of an emitter and a detector and an optical waveguide. The optical waveguide is a polymer optical waveguide film obtained by using a mold, which has, on an identical end portion thereof, an optical-path converting mirror surface and an alignment surface. One of the emitter and detector as well as the polymer optical waveguide film are held on the submount. The polymer optical waveguide film is aligned on the submount by use of the alignment surface.
    Type: Application
    Filed: November 10, 2004
    Publication date: November 10, 2005
    Inventors: Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Patent number: 6962667
    Abstract: A process for producing a polymer optical waveguide including the steps of: preparing a mold by applying a mold-forming resin layer onto a master template, peeling the layer from the master template to obtain a template, and cutting both ends of the template to expose a concave portion; bringing the mold into close contact with a film used for a cladding layer; introducing, by capillarity, a UV-curable resin or heat-curable resin by contacting the resin with one end of the mold; curing the introduced resin and removing the mold from the film; and forming a cladding layer on film on which the core has been formed, wherein a sectional area, a sectional shape, or both of a sectional area and a sectional shape of the core changes in a longitudinal direction of the core, and both end faces of the core have different areas.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: November 8, 2005
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Publication number: 20050197248
    Abstract: The present invention provides a titanium oxide photocatalytic thin film having a surface layer containing silicon oxide and titanium oxide and a production method for producing a titanium oxide photocatalytic thin film having a surface layer containing silicon oxide and titanium oxide and comprising a step of radiating excimer beam to the titanium oxide thin film while heating substrate on which the titanium oxide thin film is disposed in vacuum or gas atmosphere in the presence of a silicon-including compound.
    Type: Application
    Filed: May 10, 2005
    Publication date: September 8, 2005
    Applicants: FUJI XEROX CO., LTD., Toudai TLO, Ltd.
    Inventors: Shigemi Ohtsu, Tatsuya Maruyama, Eiichi Akutsu, Kazuhito Hashimoto
  • Publication number: 20050196096
    Abstract: A flexible optical element useful for optical wiring is provided, in which a light emitting portion is disposed to a core end face of a flexible polymeric optical waveguide channel sheet having a film substrate clad, a core and a clad layer covering the core. A method which enables of manufacturing the optical element in a simple and convenient manner at a low cost is also provided.
    Type: Application
    Filed: April 6, 2005
    Publication date: September 8, 2005
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Patent number: 6931167
    Abstract: A flexible optical element useful for optical wiring is provided, in which a light emitting portion is disposed to a core end face of a flexible polymeric optical waveguide channel sheet having a film substrate clad, a core and a clad layer covering the core. A method which enables of manufacturing the optical element in a simple and convenient manner at a low cost is also provided.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: August 16, 2005
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Patent number: 6929760
    Abstract: The invention provides a method for producing a polymer optical waveguide equipped with a plurality of alignment marks (AM), which comprises bringing a film substrate into contact with a mold having concave portions corresponding to convex portions for the optical waveguide and convex portions for a plurality of AMs, introducing a curable resin from an end of the mold into concave portions, curing the resin, peeling the mold, and forming a cladding layer on a core/AM-forming surface, or bringing a film substrate into contact with the mold having concave portions corresponding to convex portions for the optical waveguide and notches, introducing the curable resin from an end of the mold into the concave portion, curing the resin, applying a material for AM to the film substrate through the notches and, thereafter, forming the cladding layer on the core/AM-forming surface.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: August 16, 2005
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Publication number: 20050163446
    Abstract: A method of producing a polymer optical waveguide, the method including preparing a core-forming mold having a concave portion corresponding to at least one optical waveguide core, bringing a concave side of the core-forming mold into close contact with a flat substrate, filling a core-forming curable resin into the concave portion by suction and/or by utilizing a capillary phenomenon, curing the core-forming curable resin to form an optical waveguide core, and removing the optical waveguide core from the core-forming mold and the flat substrate.
    Type: Application
    Filed: September 9, 2004
    Publication date: July 28, 2005
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Publication number: 20050158003
    Abstract: A method of producing a polymer optical waveguide, including: preparing a mold; preparing a lower film base material; introducing a core-forming curable resin into a first through-hole of the mold with which the lower film base material is brought into close contact while sucking the concave portion of the mold from a second through-hole under reduced pressure to introduce the core-forming curable resin into the concave portion of the mold; curing the core-forming curable resin which has been introduced; removing the mold from the lower film base material; providing a clad-forming curable resin layer and an upper film base material, the clad-forming curable resin layer being sandwiched between the lower film base material, on which the core is formed, and the upper film base material; and curing the clad-forming curable resin layer to fix the lower film base material and the upper film base material.
    Type: Application
    Filed: September 1, 2004
    Publication date: July 21, 2005
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Publication number: 20050133943
    Abstract: A process for producing a polymer optical waveguide including: 1) preparing a rubber mold having a composite layer structure in which a rubber layer which has a concave portion corresponding to an optical waveguide core and contains a rubber mold-forming curable resin is buried in a rubber layer-forming concave portion of a rigid substrate having the rubber layer-forming concave portion; 2) bringing a cladding substrate into close contact with the rubber mold; 3) filling the concave portion of the rubber mold, with which the cladding substrate has been brought into close contact, with a core-forming curable resin; 4) curing the filled core-forming curable resin; 5) removing the rubber mold from the cladding substrate; and 6) forming a cladding layer on the cladding substrate on which the core has been formed.
    Type: Application
    Filed: June 17, 2004
    Publication date: June 23, 2005
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Eiichi Akutsu, Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda
  • Patent number: 6901198
    Abstract: A process for producing at least one polymer optical waveguide wherein each of at least one polymer optical waveguide has at least one start point and at least one end point uniformly aligned along a same single straight line. The process includes preparing a mold having at least one concave portion for forming at least one core; bringing a cladding substrate into close contact with the mold disposing the at least one concave portion towards the cladding substrate; filling the at least one concave portion of the mold with a core-forming curable resin; curing the core-forming curable resin in the at least one concave portion to form at least one core; and cutting a cladding substrate possessing at least one core part and a cladding layer thereon along the same single straight line.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: May 31, 2005
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Publication number: 20050087896
    Abstract: A method for producing an optical circuit pattern, including: forming a patterned concave portion in a layer of a water repellent and oil repellent polymer material, which has a property of being decomposed due to light having a wavelength in a range of 150 to 220 nm, by irradiating light having a wavelength in a range of 150 to 220 nm and thereby decomposing and removing the polymer material at an irradiated portion; and filling a resin material having a refractive index higher than that of the polymer material in the concave portion.
    Type: Application
    Filed: June 15, 2004
    Publication date: April 28, 2005
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Patent number: 6849171
    Abstract: In a method for forming a light waveguide, a light waveguide forming substrate is disposed so that a photosemiconductor thin film or a conductive thin film on the substrate is in contact with an aqueous electrolyte solution containing a film forming material having a property that solubility or dispersibility to a water solution decreases according to the pH change, and a voltage is applied between the photosemiconductor thin film or the conductive thin film and a counter electrode by light irradiation.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: February 1, 2005
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu