Patents by Inventor Shigenobu Komatsu

Shigenobu Komatsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7616519
    Abstract: The present invention provides a technique capable of achieving area reduction on a semiconductor integrated circuit device mounted with a time sharing virtual multi port memory or the like. By providing a configuration including a single port memory, data latch circuit for plural ports, a selector for selecting a port to be connected to the single port memory, a time sharing control signal generating circuit and the like, in which an operation termination signal inside the single port memory (a word line rising signal, a sense amplifier driving signal for data read or the like) is inputted to the time sharing control signal generating circuit to produce a port switching control signal and an operation control signal for the single port memory, a time sharing virtual multi port memory with a reduced area can be realized which requires no clock generating circuit for time sharing control newly.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: November 10, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Shigenobu Komatsu, Masanao Yamaoka
  • Publication number: 20090245445
    Abstract: A semiconductor device including a pair of stacked semiconductor ICs capable of communicating with each other by wireless. Each IC has: a transmitter circuit operable to send, by wireless, transmit data together with a clock signal deciding a transmission timing, and arranged so that the wireless transmission timing is adjustable; a receiver circuit operable to receive data in synchronization with a clock signal received by wireless, and arranged so that its wireless reception timing is adjustable; and a control circuit operable to perform timing adjustments of the transmitter and receiver circuits based on a result of authentication of data returned by the other IC in response to data transmitted through the transmitter circuit, and received by the receiver circuit. This arrangement for near field communication between stacked semiconductor ICs enables: reduction of the scale of a circuit for communication timing adjustment; and highly accurate adjustment of the communication timing.
    Type: Application
    Filed: February 12, 2009
    Publication date: October 1, 2009
    Inventors: Makoto Saen, Kenichi Osada, Shigenobu Komatsu, Itaru Nonomura, Yasuhisa Shimazaki
  • Patent number: 7596013
    Abstract: High manufacturing yield is realized and variations in threshold voltage of each MOS transistor in a CMOS•SRAM is compensated. Body bias voltages are applied to wells for MOS transistors of each SRAM memory cell in any active mode of an information holding operation, a write operation and a read operation of an SRAM. The threshold voltages of PMOS and NMOS transistors of the SRAM are first measured. Control information is respectively programmed into control memories according to the results of determination. The levels of the body bias voltages are adjusted based on the programs so that variations in the threshold voltages of the MOS transistors of the CMOS•SRAM are controlled to a predetermined error span. A body bias voltage corresponding to a reverse body bias or an extremely shallow forward body bias is applied to a substrate for the MOS transistors with an operating voltage applied to the source of each MOS transistor.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 29, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Masanao Yamaoka, Kenichi Osada, Shigenobu Komatsu
  • Publication number: 20080174359
    Abstract: A substrate bias technique is used in an active mode enabling a high yield, and an operating consumption power and the fluctuation of a signal delay in signal processing are reduced in the active mode. The additional PMOS and NMOS of the additional capacitance circuit are produced in the same production process as the PMOSs and the NMOSs of the CMOS circuits. The gate capacitance of the additional PMOS is coupled between the power supply wiring and the N well and the gate capacitance of the additional NMOS is coupled between the ground wiring and the P well. The noise on the power supply wiring is transmitted to the N well through the gate capacitance and the noise on the ground wiring is transmitted to the P well through the gate capacitance. The fluctuation of noise on the substrate bias voltage between the source and the well of PMOS and NMOS of the CMOS circuits is reduced.
    Type: Application
    Filed: November 20, 2007
    Publication date: July 24, 2008
    Inventors: Kenichi OSADA, Masanao Yamaoka, Shigenobu Komatsu
  • Publication number: 20080144365
    Abstract: In this invention, high manufacturing yield is realized and variations in threshold voltage of each MOS transistor in a CMOS•SRAM is compensated. Body bias voltages are applied to wells for MOS transistors of each SRAM memory cell in any active mode of an information holding operation, a write operation and a read operation of an SRAM. The threshold voltages of PMOS and NMOS transistors of the SRAM are first measured. Control information is respectively programmed into control memories according to the results of determination. The levels of the body bias voltages are adjusted based on the programs so that variations in the threshold voltages of the MOS transistors of the CMOS•SRAM are controlled to a predetermined error span. A body bias voltage corresponding to a reverse body bias or an extremely shallow forward body bias is applied to a substrate for the MOS transistors with an operating voltage applied to the source of each MOS transistor.
    Type: Application
    Filed: November 20, 2007
    Publication date: June 19, 2008
    Inventors: Masanao YAMAOKA, Kenichi OSADA, Shigenobu KOMATSU
  • Publication number: 20080143423
    Abstract: The present invention is directed to realize high manufacture yield and compensate variations in threshold voltage of a MOS transistor with small overhead. A semiconductor integrated circuit includes a CMOS circuit for processing an input signal in an active mode, a control switch, and a control memory. The control switch supplies a pMOS body bias voltage and an nMOS body bias voltage to an N well in a pMOS transistor and a P well in an nMOS transistor, respectively, in the CMOS circuit. The control memory stores control information indicating whether or not the pMOS body bias voltage and the nMOS body bias voltage are supplied from the control switch to the N well in the pMOS transistor and the P well in the nMOS transistor, respectively, in the CMOS circuit in the active mode.
    Type: Application
    Filed: November 20, 2007
    Publication date: June 19, 2008
    Inventors: Shigenobu Komatsu, Kenichi Osada, Masanao Yamaoka, Koichiro Ishibashi
  • Publication number: 20070297270
    Abstract: The present invention provides a technique capable of achieving area reduction on a semiconductor integrated circuit device mounted with a time sharing virtual multi port memory or the like. By providing a configuration including a single port memory, data latch circuit for plural ports, a selector for selecting a port to be connected to the single port memory, a time sharing control signal generating circuit and the like, in which an operation termination signal inside the single port memory (a word line rising signal, a sense amplifier driving signal for data read or the like) is inputted to the time sharing control signal generating circuit to produce a port switching control signal and an operation control signal for the single port memory, a time sharing virtual multi port memory with a reduced area can be realized which requires no clock generating circuit for time sharing control newly.
    Type: Application
    Filed: June 15, 2007
    Publication date: December 27, 2007
    Inventors: Shigenobu Komatsu, Masanao Yamaoka