Patents by Inventor Shigenobu Maruyama

Shigenobu Maruyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11781861
    Abstract: In a surface measurement method, a measurement surface is irradiated with a coherent light beam, reflected light reflected from the measurement surface is projected to a screen to form an optical image; and the optical image is captured by an optical sensor when the screen is continuously moved in one direction when the optical image is captured by the optical sensor.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: October 10, 2023
    Assignee: HITACHI ASTEMO, LTD.
    Inventors: Jeremy Jong, Kazushi Miyata, Shigenobu Maruyama
  • Publication number: 20210270603
    Abstract: In a surface measurement method, a measurement surface is irradiated with a coherent light beam, reflected light reflected from the measurement surface is projected to a screen to form an optical image; and the optical image is captured by an optical sensor when the screen is continuously moved in one direction when the optical image is captured by the optical sensor.
    Type: Application
    Filed: August 14, 2019
    Publication date: September 2, 2021
    Inventors: Jeremy JONG, Kazushi MIYATA, Shigenobu MARUYAMA
  • Patent number: 10254235
    Abstract: A defect inspecting method and apparatus for inspecting a surface state including a defect on a wafer surface, in which a polarization state of a laser beam irradiated onto the wafer surface is connected into a specified polarization state, the converted laser beam having the specified polarization state is inserted onto the wafer surface, and a scattering light occurring from an irradiated region where the laser beam having the specified polarization state is irradiated, is separated into a first scattering light occurring due to a defect on the wafer and a second scattering light occurring due to a surface roughness on the wafer. An optical element for optical path division separates the first and second scattering lights approximately at the same time.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: April 9, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Toshiyuki Nakao, Shigenobu Maruyama, Akira Hamamatsu, Yuta Urano
  • Publication number: 20180067060
    Abstract: A defect inspecting method and apparatus for inspecting a surface state including a defect on a wafer surface, in which a polarization state of a laser beam irradiated onto the wafer surface is connected into a specified polarization state, the converted laser beam having the specified polarization state is inserted onto the wafer surface, and a scattering light occurring from an irradiated region where the laser beam having the specified polarization state is irradiated, is separated into a first scattering light occurring due to a defect on the wafer and a second scattering light occurring due to a surface roughness on the wafer. An optical element for optical path division separates the first and second scattering lights approximately at the same time.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 8, 2018
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Toshiyuki Nakao, Shigenobu Maruyama, Akira Hamamatsu, Yuta Urano
  • Patent number: 9841384
    Abstract: A defect inspecting method and apparatus for inspecting a surface state including a defect on a wafer surface, in which a polarization state of a laser beam irradiated onto the wafer surface is connected into a specified polarization state, the converted laser beam having the specified polarization state is inserted onto the wafer surface, and a scattering light occurring from an irradiated region where the laser beam having the specified polarization state is irradiated, is separated into a first scattering light occurring due to a defect on the wafer and a second scattering light occurring due to a surface roughness on the wafer. An optical element for optical path division separates the first and second scattering lights approximately at the same time.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: December 12, 2017
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Toshiyuki Nakao, Shigenobu Maruyama, Akira Hamamatsu, Yuta Urano
  • Publication number: 20160116421
    Abstract: A defect inspecting method and apparatus for inspecting a surface state including a defect on a wafer surface, in which a polarization state of a laser beam irradiated onto the wafer surface is connected into a specified polarization state, the converted laser beam having the specified polarization state is inserted onto the wafer surface, and a scattering light occurring from an irradiated region where the laser beam having the specified polarization state is irradiated, is separated into a first scattering light occurring due to a defect on the wafer and a second scattering light occurring due to a surface roughness on the wafer. An optical element for optical path division separates the first and second scattering lights approximately at the same time.
    Type: Application
    Filed: January 4, 2016
    Publication date: April 28, 2016
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Toshiyuki Nakao, Shigenobu Maruyama, Akira Hamamatsu, Yuta Urano
  • Patent number: 9228960
    Abstract: A defect inspecting method and apparatus for inspecting a surface state including a defect on a wafer surface, in which a polarization state of a laser beam irradiated onto the wafer surface is connected into a specified polarization state, the converted laser beam having the specified polarization state is inserted onto the wafer surface, and a scattering light occurring from an irradiated region where the laser beam having the specified polarization state is irradiated, is separated into a first scattering light occurring due to a defect on the wafer and a second scattering light occurring due to a surface roughness on the wafer. An optical element for optical path division separates the first and second scattering lights approximately at the same time.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: January 5, 2016
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Toshiyuki Nakao, Shigenobu Maruyama, Akira Hamamatsu, Yuta Urano
  • Patent number: 9041921
    Abstract: A defect inspection device has: an illumination optical system which irradiates a predetermined region of an inspection target with illumination light; a detection optical system which has a detector provided with a plurality of pixels by which scattered light from the predetermined region of the inspection target due to illumination light from the illumination optical system can be detected; and a signal processing portion which is provided with a correction portion which corrects pixel displacement caused by change in a direction perpendicular to a surface of the inspection target with respect to a detection signal based on the scattered light detected by the detector of the detection optical system, and a defect determination portion which determines a defect on the surface of the inspection target based on the detection signal corrected by the correction portion.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: May 26, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Toshiyuki Nakao, Shigenobu Maruyama, Yuta Urano, Toshifumi Honda
  • Patent number: 8804110
    Abstract: Proposed is a defect inspection method whereby: illuminating light having a substantially uniform illumination intensity distribution in one direction of a sample surface irradiated on the sample surface; multiple scattered light components, which are output in multiple independent directions, are detected among the scattered light from the sample surface and multiple corresponding scattered light detection signals are obtained; at least one of the multiple scattered light detection signals is processed and the presence of defects is determined; at least one of the multiple scattered light detection signals that correspond to each of the points determined by the processing as a defect is processed and the dimensions of the defect are determined; and the position and dimensions of the defect on the sample surface, at each of the points determined as a defect, are displayed.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 12, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuta Urano, Shigenobu Maruyama, Toshiyuki Nakao, Toshifumi Honda, Yukihiro Shibata
  • Publication number: 20140125980
    Abstract: A defect inspecting method and apparatus for inspecting a surface state including a defect on a wafer surface, in which a polarization state of a laser beam irradiated onto the wafer surface is connected into a specified polarization state, the converted laser beam having the specified polarization state is inserted onto the wafer surface, and a scattering light occurring from an irradiated region where the laser beam having the specified polarization state is irradiated, is separated into a first scattering light occurring due to a defect on the wafer and a second scattering light occurring due to a surface roughness on the wafer. An optical element for optical path division separates the first and second scattering lights approximately at the same time.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 8, 2014
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Toshiyuki Nakao, Shigenobu Maruyama, Akira Hamamatsu, Yuta Urano
  • Patent number: 8654350
    Abstract: An inspecting method and apparatus for inspecting a substrate surface includes illuminating a light to the substrate surface having a film, detection of a scattered light or reflected light from a plurality of positions of the substrate surface to obtain a plurality of electrical signals, comparison of the plurality of electrical signals and a database which indicates a relationship between the electrical signals and surface roughness, and calculation of a surface roughness value based on the result of comparison.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: February 18, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akira Hamamatsu, Yoshimasa Oshima, Shunji Maeda, Hisae Shibuya, Yuta Urano, Toshiyuki Nakao, Shigenobu Maruyama
  • Patent number: 8638429
    Abstract: Provided are a defect inspecting method and a defect inspecting apparatus, wherein defect detecting sensitivity is improved and also haze measurement is performed using polarization detection, while suppressing damages to samples. The defect inspecting apparatus is provided with a light source which oscillates to a sample a laser beam having a wavelength band wherein a small energy is absorbed, and two independent detecting optical systems, i.e., a defect detecting optical system which detects defect scattered light generated by a defect, by radiating the laser beams oscillated by the light source, and a haze detecting optical system which detects roughness scattered light generated due to roughness of the wafer surface. Polarization detection is independently performed with respect to the scattered light detected by the two detecting optical systems, and based on the two different detection signals, defect determination and haze measurement are performed.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 28, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiyuki Nakao, Shigenobu Maruyama, Akira Hamamatsu, Yuta Urano
  • Patent number: 8599369
    Abstract: A defect inspection method wherein illumination light having a substantially uniform illumination intensity distribution in a certain direction on the surface of a specimen is radiated onto the surface of the specimen; wherein multiple components of those scattered light beams from the surface of the specimen which are emitted mutually different directions are detected, thereby obtaining corresponding multiple scattered light beam detection signals; wherein the multiple scattered light beam detection signals is subjected to processing, thereby determining the presence of defects; wherein the corresponding multiple scattered light detecting signals is processed with respect to all of the spots determined to be defective by the processing, thereby determining the sizes of defects; and wherein the defect locations on the specimen and the defect sizes are displayed with respect to all of the spots determined to be defective by the processing.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 3, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuta Urano, Shigenobu Maruyama, Toshiyuki Nakao, Toshifumi Honda
  • Patent number: 8514388
    Abstract: In order to maximize the effect of signal addition during inspection of foreign substances in wafers, a device structure including line sensors arranged in plural directions is effective. Low-angle detection optical systems that detect light beams in plural azimuth directions, the light beams being scattered in low angle directions among those scattered from a linear area on a sample illuminated by illuminating means, each include a combination of a first imaging lens group (330) and a diffraction grating (340) and a combination of a second imaging lens group (333) and an image detector (350) having a plurality of light receiving surfaces. A signal processing unit processes signals from the image detectors of the low-angle detection optical systems by adding the signals from the light receiving surfaces corresponding between the image detectors.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: August 20, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Shigenobu Maruyama, Toshifumi Honda, Toshiyuki Nakao, Yuta Urano
  • Publication number: 20130141715
    Abstract: Proposed is a defect inspection method whereby: illuminating light having a substantially uniform illumination intensity distribution in one direction of a sample surface irradiated on the sample surface; multiple scattered light components, which are output in multiple independent directions, are detected among the scattered light from the sample surface and multiple corresponding scattered light detection signals are obtained; at least one of the multiple scattered light detection signals is processed and the presence of defects is determined; at least one of the multiple scattered light detection signals that correspond to each of the points determined by the processing as a defect is processed and the dimensions of the defect are determined; and the position and dimensions of the defect on the sample surface, at each of the points determined as a defect, are displayed.
    Type: Application
    Filed: May 20, 2011
    Publication date: June 6, 2013
    Inventors: Yuta Urano, Shigenobu Maruyama, Toshiyuki Nakao, Toshifumi Honda, Yukihiro Shibata
  • Publication number: 20130107247
    Abstract: An inspecting method and apparatus for inspecting a substrate surface includes illuminating a light to the substrate surface having a film, detection of a scattered light or reflected light from a plurality of positions of the substrate surface to obtain a plurality of electrical signals, comparison of the plurality of electrical signals and a database which indicates a relationship between the electrical signals and surface roughness, and calculation of a surface roughness value based on the result of comparison.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 2, 2013
    Inventors: Akira Hamamatsu, Yoshimasa Oshima, Shunji Maeda, Hisae Shibuya, Yuta Urano, Toshiyuki Nakao, Shigenobu Maruyama
  • Publication number: 20130003052
    Abstract: A defect inspection device has: an illumination optical system which irradiates a predetermined region of an inspection target with illumination light; a detection optical system which has a detector provided with a plurality of pixels by which scattered light from the predetermined region of the inspection target due to illumination light from the illumination optical system can be detected; and a signal processing portion which is provided with a correction portion which corrects pixel displacement caused by change in a direction perpendicular to a surface of the inspection target with respect to a detection signal based on the scattered light detected by the detector of the detection optical system, and a defect determination portion which determines a defect on the surface of the inspection target based on the detection signal corrected by the correction portion.
    Type: Application
    Filed: January 17, 2011
    Publication date: January 3, 2013
    Inventors: Toshiyuki Nakao, Shigenobu Maruyama, Yuta Urano, Toshifumi Honda
  • Patent number: 8310665
    Abstract: An inspecting method and apparatus for inspecting a substrate surface includes application of a light to the substrate surface, detection of scattered light or reflected light from the substrate surface due to the applied light at a plurality of positions to obtain a plurality of electrical signals, extraction of a signal in a mutually different frequency band from each of the plurality of electrical signals, and calculation of a value regarding a state of film of the substrate through an arithmetical operation process of a plurality of extracted signals in the frequency bands.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: November 13, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akira Hamamatsu, Yoshimasa Oshima, Shunji Maeda, Hisae Shibuya, Yuta Urano, Toshiyuki Nakao, Shigenobu Maruyama
  • Publication number: 20120194807
    Abstract: In order to maximize the effect of signal addition during inspection of foreign substances in wafers, a device structure including line sensors arranged in plural directions is effective. Low-angle detection optical systems that detect light beams in plural azimuth directions, the light beams being scattered in low angle directions among those scattered from a linear area on a sample illuminated by illuminating means, each include a combination of a first imaging lens group (330) and a diffraction grating (340) and a combination of a second imaging lens group (333) and an image detector (350) having a plurality of light receiving surfaces. A signal processing unit processes signals from the image detectors of the low-angle detection optical systems by adding the signals from the light receiving surfaces corresponding between the image detectors.
    Type: Application
    Filed: July 28, 2010
    Publication date: August 2, 2012
    Inventors: Shigenobu Maruyama, Toshifumi Honda, Toshiyuki Nakao, Yuta Urano
  • Publication number: 20120162665
    Abstract: An inspecting method and apparatus for inspecting a substrate surface includes application of a light to the substrate surface, detection of scattered light or reflected light from the substrate surface due to the applied light at a plurality of positions to obtain a plurality of electrical signals, extraction of a signal in a mutually different frequency band from each of the plurality of electrical signals, and calculation of a value regarding a state of film of the substrate through an arithmetical operation process of a plurality of extracted signals in the frequency bands.
    Type: Application
    Filed: February 24, 2012
    Publication date: June 28, 2012
    Inventors: Akira Hamamatsu, Yoshimasa Oshima, Shunji Maeda, Hisae Shibuya, Yuta Urano, Toshiyuki Nakao, Shigenobu Maruyama