Patents by Inventor Shigeru Ando

Shigeru Ando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9630959
    Abstract: The disclosure relates to Compounds of Formula (I) and pharmaceutically acceptable derivatives thereof, where R1, R4, R8, R9, and m are as defined herein, compositions comprising an effective amount of a Compound of Formula (I) or a pharmaceutically acceptable derivative thereof, and methods for treating or preventing a condition such as pain, pain associated with osteoarthritis, osteoarthritis, UI, an ulcer, IBD, and IBS, comprising administering to an animal in need thereof an effective amount of a Compound of Formula (I) or a pharmaceutically acceptable derivative thereof.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: April 25, 2017
    Assignees: Purdue Pharma L.P., Shionogi & Co., Ltd.
    Inventors: Shigeru Ando, Noriyuki Kurose, Laykea Tafesse
  • Publication number: 20170108443
    Abstract: An inspection system of an embodiment includes: a planar illumination unit that temporally and spatially varies intensities of light in a periodic manner; a time-correlation image generator that generates a time-correlation image with a time-correlation camera or an image capturing system that performs an operation equivalent to that of the time-correlation camera; and a calculation processor that calculates a characteristic from the time-correlation image, the characteristic corresponding to a distribution of normal vectors to an inspection target surface and serving to detect an abnormality based on at least either a difference from a surrounding area or a difference from a reference surface.
    Type: Application
    Filed: March 31, 2015
    Publication date: April 20, 2017
    Inventors: Toru KURIHARA, Shigeru ANDO
  • Patent number: 9583773
    Abstract: Provided is a solid oxide fuel cell unit comprising an insulating support, and a power generation element comprising, at least, a fuel electrode, an electrolyte and an air electrode, which are sequentially laminated one another, the power generation element being provided on the insulating support, wherein an exposed insulating support portion, an exposed fuel electrode portion, and an exposed electrolyte portion are provided in an fuel electrode cell end portion.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: February 28, 2017
    Assignee: TOTO LTD.
    Inventors: Shigeru Ando, Naoki Watanabe, Takuya Hoshiko, Shuhei Tanaka, Masaki Sato, Nobuo Isaka, Yutaka Momiyama, Seiki Furuya, Kiyoshi Hayama, Yasuo Kakinuma, Osamu Okamoto
  • Publication number: 20170012312
    Abstract: The solid oxide fuel cell apparatus of the present invention comprises: multiple fuel cells mutually electrically connected to each other; an outside cylindrical member for housing the multiple fuel cells; an oxidant gas supply flow path for supplying oxidant gas to the fuel cells; a fuel gas supply flow path for supplying fuel gas to the fuel cells; a reforming portion for producing fuel gas by reforming raw fuel gas using steam; an evaporating portion for producing steam supplied to the reforming portion; and a fuel gas supply pipe for supplying water evaporated by the evaporating portion; wherein the evaporating portion comprises a sloped plate for dispersing water supplied from the fuel gas supply pipe over the entire evaporating portion using capillary action.
    Type: Application
    Filed: February 3, 2015
    Publication date: January 12, 2017
    Inventors: Naoki WATANABE, Nobuo ISAKA, Masaki SATO, Shuhei TANAKA, Shigeru ANDO, Osamu OKAMOTO, Yasuo KAKINUMA, Kiyoshi HAYAMA, Seiki FURUYA, Yutaka MOMIYAMA
  • Patent number: 9543608
    Abstract: The present invention provides a novel manufacturing method for a solid oxide fuel cell apparatus in which members of the apparatus are joined together with an adhesive, such as a ceramic adhesive. The method implements first and second types of drying and hardening steps. The first type of step may be called a workable hardening step and gives an assembly of members in the solid oxide fuel cell apparatus structural rigidity to go through assembling of the solid oxide fuel cell apparatus. The second type of step may be called a solvent elimination and hardening step and gives the assembled members property to withstand the operation temperature of the solid fuel oxide cell apparatus. The first type of step is performed at a first temperature lower than a second temperature at which the second type of step is performed. The second type of step is performed only after the first type of step is performed at multiple times.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: January 10, 2017
    Assignee: TOTO LTD.
    Inventors: Nobuo Isaka, Naoki Watanabe, Shuhei Tanaka, Takuya Hoshiko, Masaki Sato, Osamu Okamoto, Shigeru Ando, Seiki Furuya, Yutaka Momiyama, Kiyoshi Hayama
  • Patent number: 9515322
    Abstract: Disclosed is a durable solid oxide fuel cell that is less likely to have a problem of a conventional solid oxide fuel cell that an air electrode containing a peroviskite oxide, when exposed to a reducing atmosphere, is separated at the stop of operation, especially shutdown. The solid oxide fuel cell includes an air electrode that is obtained by firing a compact containing a perovskite oxide and sulfur element. The content of the sulfur element in the air electrode as fresh after firing or before the start of power generation is in the range of 50 ppm to 3,000 ppm. The separation of the air electrode is effectively suppressed at the shutdown operation.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: December 6, 2016
    Assignee: Toto Ltd.
    Inventors: Hiroshi Niimi, Akira Ishiguro, Shigeru Ando, Akira Kawakami, Megumi Shimazu, Yuya Takahashi
  • Publication number: 20160344041
    Abstract: On the other hand, the possibility of estimating the dopant ratio of a metal element to each ceria crystalline particle using integral-width or half-width obtained by XRD was considered as follows: an XRD peak is shifted depending on the dopant ratio of La to ceria; when La increases, an XRD peak is shifted to a lower angle; in XRD performed on a raw material obtained by mixing ceria crystalline particles having different dopant ratio, peaks corresponding to the respective dopant ratio exist close to each other; as a result, a peak width is widened; accordingly, the dopant ratio of a metal element to each ceria crystalline particles are supposed to vary when integral-width and half-width obtained by XRD are large. Thus, it was revealed for the first time that integral-width and half-width obtained by XRD indicate variations in dopant ratio. It should be noted that from the direct proportional relationship between the dopant ratio x and the integral-width for dopant ratio ranging from 0.35 to 0.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 24, 2016
    Applicant: Toto Ltd.
    Inventors: Shigeru Ando, Akira Ishiguro, Akira Kawakami, Megumi Shimazu, Yutaka Momiyama, Yasuo Kakinuma
  • Patent number: 9478811
    Abstract: Provided is a solid oxide fuel cell which includes a fuel electrode, a solid electrolyte, and an air electrode, each being sequentially laminated on the surface of a porous support. The porous support comprises forsterite and a nickel element. Ni and/or NiO fine particles are exposed on a surface of a sintered compact of the forsterite constituting the porous support.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: October 25, 2016
    Assignee: TOTO LTD.
    Inventors: Shigeru Ando, Osamu Okamoto, Kiyoshi Hayama, Seiki Furuya, Yutaka Momiyama, Nobuo Isaka, Masaki Sato, Shuhei Tanaka, Takuya Hoshiko, Naoki Watanabe, Yasuo Kakinuma
  • Patent number: 9461327
    Abstract: Disclosed is a solid oxide fuel cell which includes an inner electrode, a solid electrolyte, and an outer electrode, each being sequentially laminated on the surface of a porous support. The porous support contains forsterite, and further has a strontium element concentration of 0.02 mass % to 1 mass % both inclusive in terms of SrO based on the mass of the forsterite.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: October 4, 2016
    Assignee: TOTO LTD.
    Inventors: Shigeru Ando, Osamu Okamoto, Kiyoshi Hayama, Seiki Furuya, Yutaka Momiyama, Nobuo Isaka, Masaki Sato, Shuhei Tanaka, Takuya Hoshiko, Naoki Watanabe, Yasuo Kakinuma
  • Publication number: 20160254561
    Abstract: Provided is a method for producing a solid oxide fuel cell comprising the following: a fuel gas flow path, a fuel electrode layer provided around the fuel gas flow path and containing an iron group element and a ceramic, a solid electrolyte layer provided around the fuel electrode layer, and an air electrode layer provided around the solid electrolyte layer. In a high-temperature state where the temperature of the solid oxide fuel cell, in which a fuel gas is supplied from one side of the fuel gas flow path and exhausted through an opening provided on the other side of the fuel gas flow path, is close to a power generation temperature, the solid oxide fuel cell is subjected to a process for regulating oxidation expansion rate of the fuel electrode layer, the oxidation expansion occurring when an oxidant gas flows in through the opening.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Applicant: Toto Ltd.
    Inventors: Mitsunobu Shiono, Seiki Furuya, Minoru Takashio, Shigeru Ando, Hiroshi Shirahama, Megumi Shimazu, Akira Kawakami
  • Publication number: 20160222002
    Abstract: The disclosure relates to Compounds of Formula (I) and pharmaceutically acceptable derivatives thereof, where R1, R4, R8, R9, and m are as defined herein, compositions comprising an effective amount of a Compound of Formula (I) or a pharmaceutically acceptable derivative thereof, and methods for treating or preventing a condition such as pain, pain associated with osteoarthritis, osteoarthritis, UI, an ulcer, IBD, and IBS, comprising administering to an animal in need thereof an effective amount of a Compound of Formula (I) or a pharmaceutically acceptable derivative thereof.
    Type: Application
    Filed: February 8, 2016
    Publication date: August 4, 2016
    Inventors: Shigeru ANDO, Noriyuki Kurose, Laykea Tafesse
  • Publication number: 20160133980
    Abstract: To provide a method of manufacturing a solid oxide fuel cell, capable of obtaining a uniform film thickness. The present invention is a method of manufacturing fuel cells (16), including a support body-forming step (S1) for forming a porous support body (97), a film deposition step for laminating functional layers constituting electricity generating elements on a support body; and a sintering step (S14, S16) for sintering the support body on which functional layers are formed; whereby the film deposition step includes surface deposition steps (S5, S11), in which a masking layer is formed in parts not requiring film deposition, and electricity generating elements first functional layers are simultaneously formed, and a dot deposition step (S15), in which slurry dots are formed by placing a slurry into a liquid droplet state and jetting it, and a second functional layer is formed by the agglomeration of these dots.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 12, 2016
    Inventors: Seiki FURUYA, Shigeru ANDO, Yutaka MOMIYAMA, Kiyoshi HAYAMA, Osamu OKAMOTO, Naoki WATANABE, Nobuo ISAKA, Masaki SATO, Yasuo KAKINUMA, Shuhei TANAKA, Hironobu MURAKAMI, Takuya HOSHIKO, Masaru KUBOTA, Shinji SHINOHARA
  • Publication number: 20160133977
    Abstract: To provide a solid oxide fuel cell with improved durability while obtaining sufficient electricity generating performance. The present invention is a method for manufacturing solid oxide fuel cells (16) in which electricity generating elements (16a) are connected by an interconnector (102), including: a support body forming step (S1); surface deposition steps (S4, S9) for forming in sequence a first and second functional layer on a porous support body; an outermost layer deposition step (S13) for forming an outermost functional layer (101) in which slurry in liquid droplet form is continuously jetted to form dots, and an outermost functional layer is formed by the agglomeration of dots to be thicker than a first functional layer (98); and a sintering step (S14) for sintering functional layers; wherein in the outermost functional layer, traces of agglomerated dots remain and ring-shaped cracks surrounding each dot trace are formed by the sintering process.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 12, 2016
    Inventors: Seiki FURUYA, Shigeru ANDO, Yutaka MOMIYAMA, Kiyoshi HAYAMA, Osamu OKAMOTO, Naoki WATANABE, Nobuo ISAKA, Masaki SATO, Yasuo KAKINUMA, Shuhei TANAKA, Hironobu MURAKAMI, Takuya HOSHIKO
  • Publication number: 20160093896
    Abstract: A solid oxide fuel cell stack includes a support, a plurality of power generation elements connected in series, each including a fuel electrode, a solid electrolyte, and an air electrode stacked in that order on the support, and an interconnector electrically connecting an air electrode in one of the two adjacent power generation elements to a fuel electrode in the other power generation element. A solid electrolyte for one of the power generation elements is provided on the downside of the interconnector provided on the downside of the air electrode in the one power generation element so that the solid electrolyte is joined to the interconnector, and a solid electrolyte for the other power generation element is provided on the upper side of the interconnector provided on the upper side of the fuel electrode for the other power generation element so that the solid electrolyte is joined to the interconnector.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 31, 2016
    Inventors: Yasuo KAKINUMA, Osamu OKAMOTO, Shigeru ANDO, Hironobu MURAKAMI, Seiki FURUYA, Yutaka MOMIYAMA, Kiyoshi HAYAMA, Naoki WATANABE, Shuhei TANAKA, Nobuo ISAKA, Takuya HOSHIKO, Masaki SATO
  • Publication number: 20160093897
    Abstract: A solid oxide fuel cell stack includes a support, a plurality of power generation elements provided on a surface of the support, the plurality of power generation elements connected in series, each including at least a fuel electrode, a solid electrolyte, and an air electrode stacked in that order, and an interconnector that electrically connects an air electrode in one of adjacent power generation elements to a fuel electrode in the other power generation element. A solid electrolyte in adjacent one power generation element is provided between a fuel electrode in the adjacent one power generation element and the fuel electrode in the adjacent other power generation element, and an insulating member is provided at a position that is on the solid electrolyte in the adjacent one power generation element and between the air electrode in the adjacent one power generation element and the solid electrolyte therein.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 31, 2016
    Inventors: Yasuo KAKINUMA, Osamu OKAMOTO, Shigeru ANDO, Hironobu MURAKAMI, Seiki FURUYA, Yutaka MOMIYAMA, Kiyoshi HAYAMA, Naoki WATANABE, Shuhei TANAKA, Nobuo ISAKA, Takuya HOSHIKO, Masaki SATO
  • Publication number: 20160093909
    Abstract: There is provided a solid oxide fuel cell stack including an interconnector that has excellent electrical conductivity, gas sealing property, and adhesion to a solid electrolyte. The solid oxide fuel cell stack includes a plurality of power generation elements, each of which including at least a fuel electrode, a solid electrolyte, and an air electrode stacked in that order; and an interconnector that electrically connects the air electrode in one of adjacent power generation elements in the plurality of the power generation elements to the fuel electrode in the other power generation element, the plurality of power generation elements being connected in series to each other, wherein an intermediate layer having a porosity of not more than 1% and an electrical conductivity of not less than 0.05 S/cm is provided between the interconnector and the fuel electrode in the other power generation element.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 31, 2016
    Inventors: Yasuo KAKINUMA, Osamu OKAMOTO, Shigeru ANDO, Hironobu MURAKAMI, Seiki FURUYA, Yutaka MOMIYAMA, Kiyoshi HAYAMA, Naoki WATANABE, Shuhei TANAKA, Nobuo ISAKA, Takuya HOSHIKO, Masaki SATO
  • Publication number: 20160093910
    Abstract: There is provided a solid oxide fuel cell stack including a ceramic interconnector that has good electrical conductivity and oxide ion insulating property, that is, power generation efficiency. The solid oxide fuel cell stack includes at least: a plurality of power generation elements, each of which including a fuel electrode, a solid electrolyte, and an air electrode stacked in that order; and an interconnector that electrically connects the air electrode in one of adjacent power generation elements in the plurality of power generation elements to the fuel electrode in the other power generation element, the plurality of power generation elements being connected in series, wherein the interconnector is formed of formula (1): SraLabTi1-c-dNbcFedO3-???formula (1) wherein a, b, c, and d are a positive real number that satisfies 0.1?a?0.8, 0.1?b?0.8, 0.05?c?0.2, and 0.2?d?0.5.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 31, 2016
    Inventors: Yasuo KAKINUMA, Osamu OKAMOTO, Shigeru ANDO, Hironobu MURAKAMI, Seiki FURUYA, Yutaka MOMIYAMA, Kiyoshi HAYAMA, Naoki WATANABE, Shuhei TANAKA, Nobuo ISAKA, Takuya HOSHIKO, Masaki SATO
  • Patent number: 9269980
    Abstract: A solid oxide fuel cell scatters MgO over a grain boundary of an LSGM which is a solid electrolyte layer. Ni components that diffuse from a fuel electrode formed on the other side of an LDC from the LSGM are trapped by the scattered MgO particles and are suppressed from diffusing towards an air electrode in the electrolyte layer.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: February 23, 2016
    Assignee: TOTO LTD.
    Inventors: Yutaka Momiyama, Yasuo Kakinuma, Yuya Takahashi, Akira Ishiguro, Shigeru Ando, Akira Kawakami
  • Patent number: 9252435
    Abstract: In a fuel cell unit 16 that constitutes a fuel cell module 2 of an SOFC device 1, a collector cap 86a is connected to an inner electrode layer 90 via a seal material 96 as an Ag seal portion. A glass coating 30 (dense body) is filled up between the inner electrode layer 90 and an electrolyte layer 94 and the collector cap 86a to cover an upper end surface 96a of the seal material 96. As such, the fuel cell unit 16 includes the seal material 96 constituting as an Ag seal portion that separates a fuel gas from an oxidant gas, and a glass coating 30 at least partially formed to over at least either the fuel gas side surface of the seal material 96 or an the oxidant gas side surface of the seal material 96.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: February 2, 2016
    Assignee: TOTO LTD.
    Inventors: Yasuo Kakinuma, Akira Kawakami, Shuichiro Saigan, Shigeru Ando, Chihiro Kobayashi, Masato Ota, Naoki Watanabe, Nobuo Isaka, Yuya Takahashi, Megumi Shimazu
  • Patent number: 9190689
    Abstract: An object of the present invention is to provide a fuel cell preventing formation of a diffusion layer containing Ca and other elements, and having an excellent power generation performance at low temperature by preventing breakdown of a crystal structure of an electrolyte by firing. Disclosed is a solid oxide fuel cell which includes an inner electrode, a solid electrolyte, and an outer electrode, each being sequentially laminated on the surface of a porous support. The porous support contains forsterite, and has a Mg/Si molar ratio of 1.90 to 2.2 both inclusive, and an A-to-B ratio (A/B) of 0.0% to 9.0% both inclusive, where A denotes a maximum peak height which appears at a diffraction angle 2?=26.5° to 27.0° and B denotes a maximum peak height which appears at 36.5° to 37.0° in a powder X-ray diffraction pattern obtained by using Cu-K? radiation.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: November 17, 2015
    Assignee: TOTO LTD.
    Inventors: Shigeru Ando, Seiki Furuya, Yutaka Momiyama, Kiyoshi Hayama, Osamu Okamoto, Naoki Watanabe, Nobuo Isaka, Masaki Sato