Patents by Inventor Shigeto Maegawa

Shigeto Maegawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6958266
    Abstract: A partial oxide film (31) with well regions formed therebeneath isolates transistor formation regions in an SOI layer (3) from each other. A p-type well region (11) is formed beneath part of the partial oxide film (31) which isolates NMOS transistors from each other, and an n-type well region (12) is formed beneath part of the partial oxide film (31) which isolates PMOS transistors from each other. The p-type well region (11) and the n-type well region (12) are formed in side-by-side relation beneath part of the partial oxide film (31) which provides isolation between the NMOS and PMOS transistors. A body region is in contact with the well region (11) adjacent thereto. An interconnect layer formed on an interlayer insulation film (4) is electrically connected to the body region through a body contact provided in the interlayer insulation film (4). A semiconductor device having an SOI structure reduces a floating-substrate effect.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: October 25, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuo Yamaguchi, Shigeto Maegawa, Takashi Ipposhi, Toshiaki Iwamatsu, Shigenobu Maeda, Yuuichi Hirano, Takuji Matsumoto, Shoichi Miyamoto
  • Patent number: 6953979
    Abstract: A partial oxide film (31) with well regions formed therebeneath isolates transistor formation regions in an SOI layer (3) from each other. A p-type well region (11) is formed beneath part of the partial oxide film (31) which isolates NMOS transistors from each other, and an n-type well region (12) is formed beneath part of the partial oxide film (31) which isolates PMOS transistors from each other. The p-type well region (11) and the n-type well region (12) are formed in side-by-side relation beneath part of the partial oxide film (31) which provides isolation between the NMOS and PMOS transistors. A body region is in contact with the well region (11) adjacent thereto. An interconnect layer formed on an interlayer insulation film (4) is electrically connected to the body region through a body contact provided in the interlayer insulation film (4). A semiconductor device having an SOI structure reduces a floating-substrate effect.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: October 11, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuo Yamaguchi, Shigeto Maegawa, Takashi Ipposhi, Toshiaki Iwamatsu, Shigenobu Maeda, Yuuichi Hirano, Takuji Matsumoto, Shoichi Miyamoto
  • Publication number: 20050212056
    Abstract: To provide a semiconductor device capable of preventing drawbacks from being caused by metal pollution and a method of manufacturing the semiconductor device. A region (NR) and a region (PR) are defined by a trench isolation oxide film (ST21), a polysilicon film (PS21) is selectively provided on the trench isolation oxide film (ST21), a silicon layer (S22) is provided on the polysilicon film (PS21), and a side wall spacer (SW2) is provided on a side surface of the polysilicon film (PS21). The polysilicon film (PS21) is provided in a position corresponding to a top of a PN junction portion JP of a P-type well region (WR11) and an N-type well region (WR12) in an SOI layer 3 across the two well regions.
    Type: Application
    Filed: May 24, 2005
    Publication date: September 29, 2005
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Toshiaki Iwamatsu, Takashi Ipposhi, Hideki Naruoka, Nobuyoshi Hattori, Shigeto Maegawa, Yasuo Yamaguchi, Takuji Matsumoto
  • Publication number: 20050184342
    Abstract: An isolation insulating film (5) of partial-trench type is selectively formed in an upper surface of a silicon layer (4). A power supply line (21) is formed above the isolation insulating film (5). Below the power supply line (21), a complete isolation portion (23) reaching an upper surface of an insulating film (3) is formed in the isolation insulating film (5). In other words, a semiconductor device comprises a complete-isolation insulating film which is so formed as to extend from the upper surface of the silicon layer (4) and reach the upper surface of insulating film (3) below the power supply line (21). With this structure, it is possible to obtain the semiconductor device capable of suppressing variation in potential of a body region caused by variation in potential of the power supply line.
    Type: Application
    Filed: April 19, 2005
    Publication date: August 25, 2005
    Applicant: Renesas Technology Corp.
    Inventors: Yuuichi Hirano, Shigeto Maegawa, Toshiaki Iwamatsu, Takuji Matsumoto, Shigenobu Maeda, Yasuo Yamaguchi
  • Publication number: 20050167673
    Abstract: Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
    Type: Application
    Filed: March 14, 2005
    Publication date: August 4, 2005
    Applicant: Renesas Technology Corp.
    Inventors: Shigeto Maegawa, Takashi Ipposhi, Toshiaki Iwamatsu, Shigenobu Maeda, Il-Jung Kim, Kazuhito Tsutsumi, Hirotada Kuriyama, Yoshiyuki Ishigaki, Motomu Ukita, Toshiaki Tsutsumi
  • Publication number: 20050156242
    Abstract: A partial oxide film (31) with well regions formed therebeneath isolates transistor formation regions in an SOI layer (3) from each other. A p-type well region (11) is formed beneath part of the partial oxide film (31) which isolates NMOS transistors from each other, and an n-type well region (12) is formed beneath part of the partial oxide film (31) which isolates PMOS transistors from each other. The p-type well region (11) and the n-type well region (12) are formed in side-by-side relation beneath part of the partial oxide film (31) which provides isolation between the NMOS and PMOS transistors. A body region is in contact with the well region (11) adjacent thereto. An interconnect layer formed on an interlayer insulation film (4) is electrically connected to the body region through a body contact provided in the interlayer insulation film (4). A semiconductor device having an SOI structure reduces a floating-substrate effect.
    Type: Application
    Filed: January 14, 2005
    Publication date: July 21, 2005
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Yasuo Yamaguchi, Shigeto Maegawa, Takashi Ipposhi, Toshiaki Iwamatsu, Shigenobu Maeda, Yuuichi Hirano, Takuji Matsumoto, Shoichi Miyamoto
  • Publication number: 20050145940
    Abstract: There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a <110> crystal direction of a support substrate (1) with a <100> crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the <100> crystal direction of the SOI layer (3). Since hole mobility is higher in the <100> crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
    Type: Application
    Filed: February 22, 2005
    Publication date: July 7, 2005
    Applicant: Renesas Technology Corp.
    Inventors: Shigenobu Maeda, Shigeto Maegawa, Takuji Matsumoto
  • Patent number: 6914307
    Abstract: A semiconductor device includes a semiconductor layer, a plurality of semiconductor elements formed on the semiconductor layer, and an isolation film provided in a surface of the semiconductor layer, semiconductor elements being electrically isolated from each other by the isolation film. The semiconductor device also includes a PN junction portion provided under the isolation film and formed by two semiconductor regions of different conductivity types in the semiconductor layer. The isolation film includes a nitride film provided in a position corresponding to a top of the PN junction portion and has a substantially uniform thickness across the two semiconductor regions and an upper oxide film and a lower oxide film which are provided in upper and lower portions of the nitride film. The surface of the semiconductor layer is silicidized in such a state that a surface of the isolation film is exposed.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: July 5, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Toshiaki Iwamatsu, Takashi Ipposhi, Hideki Naruoka, Nobuyoshi Hattori, Shigeto Maegawa, Yasuo Yamaguchi, Takuji Matsumoto
  • Patent number: 6882006
    Abstract: A field effect transistor occupying a small area and a semiconductor device using the same can be obtained. A gate electrode is provided on a substrate on which a source region is provided with a first interlayer insulating film interposed therebetween. The gate electrode is covered with a second interlayer insulating film. A contact hole for exposing a part of the surface of the source region is provided so as to penetrate through the first interlayer insulating film, the gate electrode, and the second interlayer insulating film. A sidewall surface of the contact hole is covered with a gate insulating film. A first semiconductor layer of a first conductivity type is provided on the surface of the source region in contact therewith up to the lower surface of the gate electrode. A channel semiconductor layer is provided on the surface of the first semiconductor layer up to the upper surface of the gate electrode.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: April 19, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Shigenobu Maeda, Yasuo Yamaguchi, Hirotada Kuriyama, Shigeto Maegawa
  • Publication number: 20050078546
    Abstract: A contact connected to a word line is formed on a gate electrode of an access transistor of an SRAM cell. The contact passes through an element isolation insulating film to reach an SOI layer. A body region of a driver transistor and that of the access transistor are electrically connected with each other through the SOI layer located under the element isolation insulating film. Therefore, the access transistor is in a DTMOS structure having the gate electrode connected with the body region through the contact, which in turn is also electrically connected to the body region of the driver transistor. Thus, operations can be stabilized while suppressing increase of an area for forming the SRAM cell.
    Type: Application
    Filed: August 27, 2004
    Publication date: April 14, 2005
    Inventors: Yuuichi Hirano, Takashi Ipposhi, Shigeto Maegawa, koji Nii
  • Patent number: 6869865
    Abstract: Activation of impurities is achieved without involving creation of a crystal defect or deformation by using phonon absorption. A laser beam (42) having a wavelength in a range of 16 to 17 ?m is irradiated onto silicon, to cause phonon absorption. Before an energy supplied from the laser beam (42) diffuses around a portion which is irradiated with the laser beam (42), solid phase epitaxy in the portion finishes. Accordingly, crystallization occurs only in the portion which is irradiated with the laser beam (42), and does not occur in a portion which is not irradiated with the laser beam (42). Hence, heat is not excessively absorbed. Also, local phase change such as melting and solidification is not caused.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: March 22, 2005
    Assignees: Renesas Technology Corp., Ion Engineering Research Institute Corporation
    Inventors: Shigeto Maegawa, Takashi Ipposhi, Kazunobu Ohta, Yasuo Inoue, Masanobu Kohara, Takashi Eura, Natsuro Tsubouchi
  • Patent number: 6870226
    Abstract: There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a <110> crystal direction of a support substrate (1) with a <100> crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the <100> crystal direction of the SOI layer (3). Since hole mobility is higher in the <100> crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: March 22, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Shigenobu Maeda, Shigeto Maegawa, Takuji Matsumoto
  • Publication number: 20050037524
    Abstract: The invention relates to improvements in a method of manufacturing a semiconductor device in which deterioration in a transistor characteristic is avoided by preventing a channel stop implantation layer from being formed in an active region. After patterning a nitride film (22), the thickness of an SOI layer 3 is measured (S2) and, by using the result of measurement, etching conditions (etching time and the like) for SOI layer 3 are determined (S3). To measure the thickness of SOI layer 3, it is sufficient to use spectroscopic ellipsometry which irradiates the surface of a substance with linearly polarized light and observes elliptically polarized light reflected by the surface of a substance. The etching condition determined is used and a trench TR2 is formed by using patterned nitride film 22 as an etching mask (S4).
    Type: Application
    Filed: September 27, 2004
    Publication date: February 17, 2005
    Applicant: Renesas Technology Corp.
    Inventors: Takuji Matsumoto, Mikio Tsujiuchi, Toshiaki Iwamatsu, Shigenobu Maeda, Yuuichi Hirano, Shigeto Maegawa
  • Patent number: 6841400
    Abstract: The invention relates to improvements in a method of manufacturing a semiconductor device in which deterioration in a transistor characteristic is avoided by preventing a channel stop implantation layer from being formed in an active region. After patterning a nitride film (22), the thickness of an SOI layer 3 is measured (S2) and, by using the result of measurement, etching conditions (etching time and the like) for SOI layer 3 are determined (S3). To measure the thickness of SOI layer 3, it is sufficient to use spectroscopic ellipsometry which irradiates the surface of a substance with linearly polarized light and observes elliptically polarized light reflected by the surface of a substance. The etching condition determined is used and a trench TR2 is formed by using patterned nitride film 22 as an etching mask (S4).
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: January 11, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Takuji Matsumoto, Mikio Tsujiuchi, Toshiaki Iwamatsu, Shigenobu Maeda, Yuuichi Hirano, Shigeto Maegawa
  • Publication number: 20040232554
    Abstract: The semiconductor device has a silicon layer (SOI layer) (12) formed through a silicon oxide film (11) on a support substrate (10). A transistor (T1) is formed in the SOI layer (12). The wiring (17a) is connected with a source of the transistor (T1) through a contact plug (15a). A back metal (18) is formed on an under surface (back surface) of the support substrate (10) and said back metal (18) is connected with the wiring (17a) through a heat radiating plug (16). The contact plug (15a), the heat radiating plug (16) the wiring (17a) and the back metal (18) is made of a metal such as aluminum, tungsten and so on which has a higher thermal conductivity than that of the silicon oxide film (11) and the support substrate (10).
    Type: Application
    Filed: March 8, 2004
    Publication date: November 25, 2004
    Applicant: Renesas Technology Corp.
    Inventors: Yuuichi Hirano, Shigenobu Maeda, Takuji Matsumoto, Takashi Ipposhi, Shigeto Maegawa
  • Patent number: 6815295
    Abstract: In a semiconductor device and a method of manufacturing the same according to the present invention, a trade-off relationship between threshold values and a diffusion layer leakage is eliminated and it is not necessary to form gate oxide films at more than one stages. Since doses of nitrogen are different from each other between gate electrodes (4A to 4C) of N-channel type MOS transistors (T41 to T43), concentrations of nitrogen in the nitrogen-introduced regions (N1 to N3) are accordingly different from each other. Concentrations of nitrogen in the gate electrodes are progressively lower in the order of expected higher threshold values.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: November 9, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Shuichi Ueno, Yoshinori Okumura, Shigenobu Maeda, Shigeto Maegawa
  • Patent number: 6787855
    Abstract: A semiconductor device and a manufacturing method thereof are obtained which can restrain increase of the parasitic capacitance generated between contact plugs of source/drain regions and a gate electrode while reducing the area of the source/drain regions. A channel region is formed under a gate electrode 1. A pair of source/drain regions 2 are formed to sandwich the channel region. The source/drain regions 2 have a first part 3a being adjacent to the channel region and a second part 3b formed to protrude in a channel width direction from the first part 3a so that a part of outer peripheries of the source/drain regions 2 extend away from the gate electrode 1 in a plan view. Contact plugs 4 are formed on the second part 3b for connecting the source/drain regions 2 to source/drain wirings.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: September 7, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Yuuichi Hirano, Shigenobu Maeda, Shigeto Maegawa
  • Publication number: 20040145017
    Abstract: A semiconductor device and a manufacturing method thereof are obtained which can restrain increase of the parasitic capacitance generated between contact plugs of source/drain regions and a gate electrode while reducing the area of the source/drain regions. A channel region is formed under a gate electrode 1. A pair of source/drain regions 2 are formed to sandwich the channel region. The source/drain regions 2 have a first part 3a being adjacent to the channel region and a second part 3b formed to protrude in a channel width direction from the first part 3a so that a part of outer peripheries of the source/drain regions 2 extend away from the gate electrode 1 in a plan view. Contact plugs 4 are formed on the second part 3b for connecting the source/drain regions 2 to source/drain wirings.
    Type: Application
    Filed: January 15, 2004
    Publication date: July 29, 2004
    Applicant: Renesas Technology Corp.
    Inventors: Yuuichi Hirano, Shigenobu Maeda, Shigeto Maegawa
  • Publication number: 20040087118
    Abstract: Activation of impurities is achieved without involving creation of a crystal defect or deformation by using phonon absorption. A laser beam (42) having a wavelength in a range of 16 to 17 &mgr;m is irradiated onto silicon, to cause phonon absorption. Before an energy supplied from the laser beam (42) diffuses around a portion which is irradiated with the laser beam (42), solid phase epitaxy in the portion finishes. Accordingly, crystallization occurs only in the portion which is irradiated with the laser beam (42), and does not occur in a portion which is not irradiated with the laser beam (42). Hence, heat is not excessively absorbed. Also, local phase change such as melting and solidification is not caused.
    Type: Application
    Filed: June 30, 2003
    Publication date: May 6, 2004
    Applicants: Renesas Technology Corp., Ion Engineering Research Institute, Corporation, Natsuro Tsubouchi
    Inventors: Shigeto Maegawa, Takashi Ipposhi, Kazunobu Ohta, Yasuo Inoue, Masanobu Kohara, Takashi Eura, Natsuro Tsubouchi
  • Patent number: 6727551
    Abstract: The object of the present invention is to suppress a short channel effect on a threshold voltage. A channel region 5, a pair of source-drain regions and an isolating film 2 having a trench isolation structure are selectively formed in a main surface of a semiconductor substrate 1. An upper surface of the isolating film 2 recedes to be lower than an upper surface of the channel region 5 in a trench portion adjacent to side surfaces of the channel region 5 and to be almost on a level with the upper surface of the channel region 5 in other regions. Consequently, a part of the side surfaces of the channel region 5 as well as the upper surface thereof are covered by a gate electrode 4 with a gate insulating film 3 interposed therebetween. A channel width W of the channel region 5 is set to have a value which is equal to or smaller than a double of a maximum channel depletion layer width Xdm.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: April 27, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Shigeto Maegawa