Patents by Inventor Shih-Chang Chen

Shih-Chang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190376877
    Abstract: A portable gas detecting device includes at least one detecting chamber, at least one gas sensor and at least one actuator. The gas sensor is disposed in the detecting chamber and configured for monitoring gas inside the detecting chamber. The actuator is disposed in the detecting chamber and includes a piezoelectric actuator. When an actuating signal is applied to the piezoelectric actuator and the piezoelectric actuator generates a resonance effect, the gas outside the detecting chamber is introduced into the detecting chamber for sampling. The actuator is driven by an instantaneous sampling pulse to control a trace of gas to flow into the detecting chamber for forming a stable airflow environment. In the stable airflow environment, a gas molecule is dissolved in or bonded to a reaction material on a surface of the gas sensor for reacting.
    Type: Application
    Filed: May 8, 2019
    Publication date: December 12, 2019
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan MOU, Shih-Chang CHEN, Chiu-Lin LEE, Ching-Sung LIN, Chi-Feng HUANG, Yung-Lung HAN, Chun-Yi KUO
  • Publication number: 20190369499
    Abstract: Embodiments herein beneficially enable simultaneous processing of a plurality of substrates in a digital direct write lithography processing system. In one embodiment a method of processing a plurality of substrate includes positioning a plurality of substrates on a substrate carrier of a processing system, positioning the substrate carrier under the plurality of optical modules, independently leveling each of the plurality of substrates, determining offset information for each of the plurality of substrates, generating patterning instructions based on the offset information for each of the plurality of substrates, and patterning each of the plurality of substrates using the plurality of optical modules. The processing system comprises a base, a motion stage disposed on the base, the substrate carrier disposed on the motion stage, a bridge disposed above a surface of the base and separated therefrom, and a plurality of optical modules disposed on the bridge.
    Type: Application
    Filed: March 19, 2019
    Publication date: December 5, 2019
    Inventors: Chien-Hua LAI, Chia-Hung KAO, Hsiu-Jen WANG, Shih-Hao KUO, Yi-Sheng LIU, Shih-Hsien LEE, Ching-Chang CHEN, Tsu-Hui YANG
  • Patent number: 10487820
    Abstract: A miniature pneumatic device includes a miniature fluid control device and a miniature valve device. The miniature fluid control device includes a gas inlet plate, a resonance plate, a piezoelectric actuator and a gas collecting plate. A first chamber is formed between the resonance plate and the piezoelectric actuator. After a gas is fed into the gas inlet plate, the gas is transferred to the first chamber through the resonance plate and then transferred downwardly. Consequently, a pressure gradient is generated to continuously push the gas. The miniature valve device includes a valve plate and a gas outlet plate. After the gas is transferred from the miniature fluid control device to the miniature valve device, the valve opening of the valve plate is correspondingly opened or closed and the gas is transferred in one direction. Consequently, a pressure-collecting operation or a pressure-releasing operation is selectively performed.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: November 26, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Jia-Yu Liao, Shou-Hung Chen, Che-Wei Huang, Hung-Hsin Liao, Chao-Chih Chen, Jheng-Wei Chen, Ying-Lun Chang, Chia-Hao Chang, Wei-Ming Lee
  • Patent number: 10487821
    Abstract: A miniature fluid control device includes a piezoelectric actuator and a housing. The piezoelectric actuator comprises a suspension plate, an outer frame, at least one bracket and a piezoelectric ceramic plate. The piezoelectric ceramic plate is attached on a first surface of the suspension plate and has a length not larger than that of the suspension plate. The housing includes a gas collecting plate and a base. The gas collecting plate is a frame body with a sidewall and comprises a plurality of perforations. The base seals a bottom of the piezoelectric actuator and has a central aperture corresponding to the middle portion of the suspension plate. When the voltage is applied to the piezoelectric actuator, the suspension plate is permitted to undergo the curvy vibration, the fluid is transferred from the central aperture of the base to the gas-collecting chamber, and exited from the perforations.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: November 26, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Jia-Yu Liao, Shou-Hung Chen, Che-Wei Huang, Hung-Hsin Liao, Chao-Chih Chen, Jheng-Wei Chen, Ying-Lun Chang, Chia-Hao Chang, Wei-Ming Lee
  • Publication number: 20190353913
    Abstract: A laser-based manufacturing system is disclosed for fabricating non-planar three-dimensional layers. The system may have a laser for producing a laser beam with a plurality of optical wavelengths. An optically dispersive element may be used for receiving the laser beam and splitting the beam into a plurality of distinct beam components, wherein each beam component has spatially separated optical spectral components. A phase mask may be used which is configured to receive at least one of the beam components emerging from the dispersive element and to create a modified beam. One or more focusing elements may then be used to receive the modified beam emerging from the phase mask and to focus the modified beam into a non-planar light sheet for use in fabricating a part.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 21, 2019
    Inventors: Sourabh SAHA, Shih-Chi CHEN, Yina CHANG
  • Publication number: 20190331558
    Abstract: An actuating and sensing module includes a first substrate, a second substrate, an actuating device and a sensor. The first and second substrates are stacked on each other as a gas flow channel is formed therebetween. The gas inlet, the gas flow channel and the gas outlet are in communication with each other to define a gas flow path. The actuating device is disposed in the gas outlet of the second substrate and electrically connected to a control circuit to obtain driving power. The sensor is disposed in the gas flow path and misaligned with the gas inlet. The sensor is spaced apart from the actuating device and is electrically connected to the control circuit. Being driven by the actuating device, the gas is transported from the outside into the gas flow path and monitored by the sensor.
    Type: Application
    Filed: February 14, 2019
    Publication date: October 31, 2019
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Chun-Yi Kuo
  • Publication number: 20190333921
    Abstract: Various embodiments of the present application are directed to a method for forming an embedded memory boundary structure with a boundary sidewall spacer. In some embodiments, an isolation structure is formed in a semiconductor substrate to separate a memory region from a logic region. A multilayer film is formed covering the semiconductor substrate. A memory structure is formed on the memory region from the multilayer film. An etch is performed into the multilayer film to remove the multilayer film from the logic region, such that the multilayer film at least partially defines a dummy sidewall on the isolation structure. A spacer layer is formed covering the memory structure, the isolation structure, and the logic region, and further lining the dummy sidewall. An etch is performed into the spacer layer to form a spacer on dummy sidewall from the spacer layer. A logic device structure is formed on the logic region.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Ming Chyi Liu, Shih-Chang Liu, Sheng-Chieh Chen, Yu-Hsing Chang
  • Patent number: 10459353
    Abstract: The present disclosure provides a lithography system. The lithography system includes an exposing module configured to perform a lithography exposing process using a mask secured on a mask stage; and a cleaning module integrated in the exposing module and designed to clean at least one of the mask and the mask stage using an attraction mechanism.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: October 29, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shang-Chieh Chien, Jeng-Horng Chen, Jui-Ching Wu, Chia-Chen Chen, Hung-Chang Hsieh, Chi-Lun Lu, Chia-Hao Yu, Shih-Ming Chang, Anthony Yen
  • Patent number: 10459341
    Abstract: Embodiments of the present disclosure generally provide a digital lithography system that can process both large area substrates as well as semiconductor device substrates, such as wafers. Both the large area substrates and the semiconductor device substrates can be processed in the same system simultaneously. Additionally, the system can accommodate different levels of exposure for forming the features over the substrates. For example, the system can accommodate very precise feature patterning as well as less precise feature patterning. The different exposures can occur in the same chamber simultaneously. Thus, the system is capable of processing both semiconductor device substrates and large area substrates simultaneously while also accommodating very precise feature patterning simultaneous with less precise feature patterning.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: October 29, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chien-Hua Lai, Ching-Chang Chen, Shih-Hao Kuo, Tsu-Hui Yang, Hsiu-Jen Wang, Yi-Sheng Liu, Chia-Hung Kao
  • Patent number: 10461089
    Abstract: Various embodiments of the present application are directed to a method for forming an embedded memory boundary structure with a boundary sidewall spacer. In some embodiments, an isolation structure is formed in a semiconductor substrate to separate a memory region from a logic region. A multilayer film is formed covering the semiconductor substrate. A memory structure is formed on the memory region from the multilayer film. An etch is performed into the multilayer film to remove the multilayer film from the logic region, such that the multilayer film at least partially defines a dummy sidewall on the isolation structure. A spacer layer is formed covering the memory structure, the isolation structure, and the logic region, and further lining the dummy sidewall. An etch is performed into the spacer layer to form a spacer on dummy sidewall from the spacer layer. A logic device structure is formed on the logic region.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: October 29, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming Chyi Liu, Shih-Chang Liu, Sheng-Chieh Chen, Yu-Hsing Chang
  • Patent number: 10451051
    Abstract: A miniature pneumatic device includes a miniature fluid control device and a miniature valve device. The miniature fluid control device includes a gas inlet plate, a resonance plate, a piezoelectric actuator and a gas collecting plate. A first chamber is formed between the resonance plate and the piezoelectric actuator. After a gas is fed into the gas inlet plate, the gas is transferred to the first chamber through the resonance plate and then transferred downwardly. Consequently, a pressure gradient is generated to continuously push the gas. The miniature valve device includes a valve plate and a gas outlet plate. After the gas is transferred from the miniature fluid control device to the miniature valve device, the valve opening of the valve plate is correspondingly opened or closed and the gas is transferred in one direction. Consequently, a pressure-collecting operation or a pressure-releasing operation is selectively performed.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: October 22, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Jia-Yu Liao, Shou-Hung Chen, Che-Wei Huang, Hung-Hsin Liao, Chao-Chih Chen, Jheng-Wei Chen, Ying-Lun Chang, Chia-Hao Chang, Wei-Ming Lee
  • Patent number: 10447060
    Abstract: A charging device includes a main control circuit, a connecting interface, a power supply circuit and a detecting circuit. When an energy storage element connects to the charging device, the connecting interface is coupled to two terminals of a temperature control element. The power supply circuit is coupled to the connecting interface and the main control circuit. The detecting circuit is coupled to the connecting interface. When the energy storage element connects to the charging device, the detecting circuit generates a detecting signal being used to trigger the power supply circuit to provide a main operating voltage to the main control circuit. When temperature of the energy storage element exceeds a threshold, the temperature control element makes the detecting circuit not to generate the detecting signal, so the power supply circuit ceases to provide the main operating voltage to the main control circuit.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: October 15, 2019
    Assignee: CHICONY POWER TECHNOLOGY CO., LTD.
    Inventors: Shih-Chang Lee, Chien-Hung Chen, Chih-Chung Yen, Chung-Shu Lee
  • Patent number: 10438868
    Abstract: An air-cooling heat dissipation device is provided for removing heat from an electronic component. The air-cooling heat dissipation device includes a supporting substrate, an air pump and a heat sink. The supporting substrate includes a top surface, a bottom surface, an introduction opening and a thermal conduction plate. The thermal conduction plate is located over the top surface of the supporting substrate and aligned with the introduction opening. The electronic component is disposed on the thermal conduction plate. The air pump is fixed on the bottom surface of the supporting substrate and aligned with the introduction opening. The heat sink is attached on the electronic component. When the air pump is enabled, an ambient air is introduced into the introduction opening to remove the heat from the thermal conduction plate.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: October 8, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Jia-Yu Liao, Shih-Chang Chen, Che-Wei Huang, Chi-Feng Huang, Yung-Lung Han
  • Publication number: 20190302072
    Abstract: A gas detecting module includes a carrying plate, a sensor, a compartment body and an actuator. The carrying plate has a substrate and a gas opening. The compartment body is divided into a first compartment and a second compartment by a partition plate. The first compartment has an opening. The second compartment has an outlet and accommodates the actuator. The bottom of the compartment body has an accommodation recess receiving the carrying plate, whereby the gas opening is aligned with the outlet, and the sensor packaged on the substrate is disposed within the first compartment through the opening. The partition plate has a notch. The gas detecting module is assembled in a slim-type portable device having a casing. The casing has an inlet aligned with the first compartment. As the actuator is actuated, ambient gas is inhaled into the first compartment, and the sensor detects the gas flowing therethrough.
    Type: Application
    Filed: February 1, 2019
    Publication date: October 3, 2019
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Shih-Chang Chen, Chi-Chang Yang, Chiu-Lin Lee, Jia-Yu Liao, Ching-Sung Lin, Chih-Kai Chen, Chi-Feng Huang, Yung-Lung Han
  • Publication number: 20190302572
    Abstract: A camera module includes a variable aperture module and a lens module. The variable aperture module includes at least one aperture piece and a radial propulsion device. The lens module includes a lens assembly and an axial propulsion device. The axial propulsion device is configured to drive the lens assembly along an axial direction. The radial propulsion device is configured to propel the aperture piece in a radial direction approaching a central axis of the lens assembly, such that a portion of the aperture piece enters the lens assembly through an opening defined by the wall of the lens barrel. The radial propulsion device is configured to retract the aperture piece in a radial direction away from the central axis of the lens assembly, such that the portion of the aperture piece leaving the lens assembly through the opening defined by the wall of the lens barrel.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Inventors: Shih-Han Chen, Yu-Teng Jheng, Hung-Chang Cho
  • Patent number: 10424560
    Abstract: A three-dimensional integrated circuit cooling system is provided for removing heat from a three-dimensional integrated circuit. Plural fluid microchannels are formed among plural middle chip layers and a main chip layer of the three-dimensional integrated circuit. The three-dimensional integrated circuit cooling system comprises a base and a fluid pump. The base has an introduction opening, a discharge opening and a fluid passage. The fluid pump is fixed on the base and seals the edge of the introduction opening. When the fluid pump is enabled, an ambient fluid is driven by the fluid pump, introduced into the fluid passage through the introduction opening, and discharged through the discharge opening. The discharged fluid passes along every fluid microchannel of the three-dimensional integrated circuit as flowing through the plural middle chip layers and the main chip layer so as to perform heat exchange therewith.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: September 24, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Li-Pang Mo, Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han
  • Publication number: 20190279995
    Abstract: An integrated circuit for a flash memory device with enlarged spacing between select and memory gate structures is provided. The enlarged spacing is obtained by forming corner recesses at the select gate structure so that a top surface with a reduced dimension of the select gate structure is obtained. In one example, a semiconductor substrate having memory cell devices formed thereon, the memory cell devices includes a semiconductor substrate having memory cell devices formed thereon, the memory cell devices includes a plurality of select gate structures and a plurality of memory gate structures formed adjacent to the plurality of select gate structures, wherein at least one of the plurality of select gate structures have a corner recess formed below a top surface of the at least one of the plurality of select gate structures.
    Type: Application
    Filed: May 24, 2019
    Publication date: September 12, 2019
    Inventors: Sheng-Chieh Chen, Ming Chyi Liu, Shih-Chang Liu
  • Publication number: 20190273025
    Abstract: Systems and methods for dicing a sample by a Bessel beam matrix are disclosed. The method for dicing a sample by a Bessel beam matrix may comprise generating a Bessel beam matrix including multiple Bessel beams arranged in a matrix form, according to a predetermined dicing layout of the sample; controlling a focus position of each Bessel beam in the generated Bessel beam matrix; and focusing simultaneously the Bessel beams of the Bessel beam matrix at the respective controlled focus positions within the sample for dicing.
    Type: Application
    Filed: March 5, 2018
    Publication date: September 5, 2019
    Inventors: Shih-Chi Chen, Hiu Hung Lee, Dapeng Zhang, Erxuan Zhao, Yina Chang, Dihan Chen
  • Publication number: 20190265132
    Abstract: A gas detecting device includes a casing, a gas transportation actuator, a gas detector and a driving module. The casing has an inlet, an outlet and an accommodation slot. The inlet and the outlet are in fluid communication with each other, and the accommodation slot is disposed under the inlet and is in fluid communication with the inlet. The gas transportation is disposed within and seals the accommodation slot, and the gas transportation actuator is enabled to introduce air thereinto through the inlet and discharge the air through the outlet. The gas detector is configured to detect an amount of a specific gas in the air introduced through the inlet. The driving module controls the actuations of the gas transportation actuator and the gas detector, so that the gas detector detects the amount of the specific gas in the air.
    Type: Application
    Filed: December 27, 2018
    Publication date: August 29, 2019
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Shih-Chang Chen, Ching-Sung Lin, Yung-Lung Han, Chi-Feng Huang, Wei-Ming Lee
  • Patent number: 10385838
    Abstract: A miniature fluid control device includes a gas inlet plate, a resonance plate and a piezoelectric actuator. The gas inlet plate includes at least one inlet, at least one convergence channel and a central cavity. A convergence chamber is defined by the central cavity. The resonance plate has a central aperture. The piezoelectric actuator includes a suspension plate, an outer frame and a piezoelectric ceramic plate. A gap is formed between the resonance plate and the piezoelectric actuator to define a first chamber. When the piezoelectric actuator is driven and after the gas is fed into the miniature fluid control device through the inlet of the gas inlet plate, the gas is sequentially converged to the central cavity through the convergence channel, transferred through the central aperture of the resonance plate, introduced into the first chamber, transferred downwardly through the piezoelectric actuator, and exited from the miniature fluid control device.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: August 20, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Jia-Yu Liao, Shou-Hung Chen, Che-Wei Huang, Hung-Hsin Liao, Chao-Chih Chen, Jheng-Wei Chen, Ying-Lun Chang, Chia-Hao Chang, Wei-Ming Lee