Patents by Inventor Shih-Chang Liu

Shih-Chang Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9536969
    Abstract: The present disclosure relates to a self-aligned split gate memory cell, and an associated method. The self-aligned split gate memory cell has cuboid shaped memory gate and select gate covered upper surfaces by some spacers. Thus the memory gate and select gate are protected from silicide. The memory gate and select gate are defined self-aligned by the said spacers. The memory gate and select gate are formed by etching back corresponding conductive materials not covered by the spacers instead of recess processes. Thus the memory gate and select gate have planar upper surfaces and are well defined. The disclosed device and method is also capable of further scaling since photolithography processes are reduced.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: January 3, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Hsueh Yang, Chung-Chiang Min, Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9536888
    Abstract: The present disclosure relates a method of forming an integrated circuit. In some embodiments, the method is performed by patterning a first masking layer over a substrate to have a first plurality of openings at a memory cell region and a second plurality of openings at a boundary region. A first plurality of dielectric bodies are formed within the first plurality of openings and a second plurality of dielectric bodies are formed within the second plurality of openings. A second masking layer is formed over the first masking layer and the first and second plurality of dielectric bodies. The first and second masking layers are removed at the memory cell region, and a first conductive layer is formed to fill recesses between the first plurality of dielectric bodies. A planarization process reduces a height of the first conductive layer and removes the first conductive layer from over the boundary region.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: January 3, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Ming Wu, Harry-Hak-Lay Chuang, Shih-Chang Liu
  • Publication number: 20160379987
    Abstract: The present disclosure relates to an integrated chip having a FinFET device and an embedded flash memory device, and a method of formation. In some embodiments, the integrated chip has a logic region and a memory region that is laterally separated from the logic region. The logic region has a first plurality of fins of semiconductor material protruding outward from a semiconductor substrate. A gate electrode is arranged over the first plurality of fins of semiconductor material. The memory region has a second plurality of fins of semiconductor material extending outward from the semiconductor substrate. An embedded flash memory cell is arranged onto the second plurality of fins of semiconductor material. The resulting integrated chip structure provides for good performance since it contains both a FinFET device and an embedded flash memory device.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 29, 2016
    Inventors: Ming Chyi Liu, Chang-Ming Wu, Shih-Chang Liu, Yu-Hsing Chang, Yuan-Tai Tseng
  • Publication number: 20160380183
    Abstract: Some embodiments relate to an integrated circuit including a magnetoresistive random-access memory (MRAM) cell. The integrated circuit includes a semiconductor substrate and an interconnect structure disposed over the semiconductor substrate. The interconnect structure includes a plurality of dielectric layers and a plurality of metal layers that are stacked over one another in alternating fashion. The plurality of metal layers include a lower metal layer and an upper metal layer disposed over the lower metal layer. A bottom electrode is disposed over and in electrical contact with the lower metal layer. A magnetic tunneling junction (MTJ) is disposed over an upper surface of bottom electrode. A top electrode is disposed over an upper surface of the MTJ and is in direct electrical contact with a lower surface of the upper metal layer.
    Type: Application
    Filed: January 19, 2016
    Publication date: December 29, 2016
    Inventors: Harry-Hak-Lay Chuang, Chem-Yow Hsu, Shih-Chang Liu
  • Patent number: 9525130
    Abstract: A phase change memory (“PCM”) cell is provided in accordance with some embodiments. The PCM includes a spacer defining a reaction area; a phase change material layer disposed within the reaction area; a protection layer disposed over the phase change material layer and within the reaction area defined by the spacer; and a capping layer disposed over the protection layer and the spacer.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: December 20, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsun-Kai Tsao, Ming-Huei Shen, Shih-Chang Liu, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20160365512
    Abstract: The present disclosure relates to integrated circuits having a resistive random access memory (RRAM) cell, and associated methods of forming such RRAM cells. In some embodiments, the RRAM cell includes a bottom electrode and a top electrode which are separated from one another by an RRAM dielectric. A bottom electrode sidewall and a top electrode sidewall are vertically aligned to one another, and an RRAM dielectric sidewall is recessed back from the bottom electrode sidewall and the top electrode sidewall.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 15, 2016
    Inventors: Fu-Ting Sung, Chung-Yen Chou, Shih-Chang Liu
  • Publication number: 20160365350
    Abstract: A method of manufacturing an embedded flash memory device is provided. A pair of gate stacks are formed spaced over a semiconductor substrate, and including floating gates and control gates over the floating gates. A common gate layer is formed over the gate stacks and the semiconductor substrate, and lining sidewalls of the gate stacks. A first etch is performed into the common gate layer to recess an upper surface of the common gate layer to below upper surfaces respectively of the gate stacks, and to form an erase gate between the gate stacks. Hard masks are respectively formed over the erase gate, a word line region of the common gate layer, and a logic gate region of the common gate layer. A second etch is performed into the common gate layer with the hard masks in place to concurrently form a word line and a logic gate.
    Type: Application
    Filed: August 24, 2016
    Publication date: December 15, 2016
    Inventors: Harry-Hak-Lay Chuang, Chang-Ming Wu, Shih-Chang Liu
  • Publication number: 20160365513
    Abstract: A storage device includes a first electrode, a second electrode, a storage element, a spacer and a barrier structure. The second electrode is opposite to the first electrode. The storage element is disposed between the first electrode and the second electrode. The spacer is formed on a sidewall of the second electrode, and the spacer has a notch positioned on a top surface of the spacer. The barrier structure is embedded in a lateral of the spacer, and the barrier structure has a top extending upwards past a bottom of the notch. In addition, a method of manufacturing the storage device is disclosed as well.
    Type: Application
    Filed: June 15, 2015
    Publication date: December 15, 2016
    Inventors: Fu-Ting SUNG, Chern-Yow HSU, Shih-Chang LIU
  • Publication number: 20160358928
    Abstract: The present disclosure relates to a flash memory device, and associated methods. In some embodiments, the flash memory device has a gate stack with a control gate separated from a floating gate by a control gate dielectric. An erase gate disposed on a first side of the gate stack. A word line is disposed on a second side of the gate stack that is opposite the first side. The word line has a height that monotonically increases from an outer side opposite to the gate stack to an inner side closer to the gate stack. The shape of the word line optimizes the contact resistance of the word line and allows for an overlying cap spacer formed on the word line to be well defined, which can provide more reliable read/write operations and/or better performance.
    Type: Application
    Filed: June 3, 2015
    Publication date: December 8, 2016
    Inventors: Chang-Ming Wu, Shih-Chang Liu
  • Publication number: 20160355394
    Abstract: A microelectromechanical systems (MEMS) structure with a cavity hermetically sealed using a mask layer is provided. A capping substrate is arranged over a MEMS substrate, which includes a movable element. The capping substrate includes the cavity arranged over and opening to the movable element, and includes a seal opening in fluid communication with the cavity. The mask layer is arranged over the capping substrate. The mask layer overhangs the seal opening and laterally surrounds a mask opening arranged over the seal opening. A seal layer is arranged over the mask layer and the mask opening. The seal layer is configured to hermetically seal the cavity. A method for manufacturing the MEMS structure is also provided.
    Type: Application
    Filed: June 3, 2015
    Publication date: December 8, 2016
    Inventors: Lee-Chuan Tseng, Chung-Yen Chou, Shih-Chang Liu, Yuan-Chih Hsieh
  • Publication number: 20160351806
    Abstract: The present disclosure relates to an integrated circuit device having an RRAM cell, and an associated method of formation. In some embodiments, the integrated circuit device has a bottom electrode disposed over a lower metal interconnect layer. The integrated circuit device also has a resistance switching layer with a variable resistance located on the bottom electrode, and a top electrode located over the resistance switching layer. The integrated circuit device also has a self-sputtering spacer having a lateral portion that surrounds the bottom electrode at a position that is vertically disposed between the resistance switching layer and a bottom etch stop layer and a vertical portion abutting sidewalls of the resistance switching layer and the top electrode. The integrated circuit device also has a top etch stop layer located over the bottom etch stop layer abutting sidewalls of the self-sputtering spacer and overlying the top electrode.
    Type: Application
    Filed: August 10, 2016
    Publication date: December 1, 2016
    Inventors: Ching-Pei Hsieh, Chung-Yen Chou, Shih-Chang Liu
  • Publication number: 20160351803
    Abstract: A memory structure includes a first dielectric layer, having a first top surface, over a conductive structure. A first opening in the first dielectric layer exposes an area of the conductive structure, and has an interior sidewall. A first electrode structure, having a first portion and a second portion, is over the exposed area of the conductive structure. The second portion extends upwardly along the interior sidewall. A resistance variable layer is disposed over the first electrode. A second electrode structure, having a third portion and a fourth portion, is over the resistance variable layer. The third portion has a second top surface below the first top surface of the first dielectric layer. The fourth portion extends upwardly along the resistance variable layer. A second opening is defined by the second electrode structure. At least a part of a second dielectric layer is disposed in the second opening.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Fu-Ting Sung, Ching-Pei Hsieh, Chia-Shiung Tsai, Chern-Yow Hsu, Shih-Chang Liu
  • Patent number: 9508722
    Abstract: A semiconductor arrangement includes a logic region and a memory region. The memory region has an active region that includes a semiconductor device. The memory region also has a capacitor within one or more dielectric layers over the active region, where the capacitor is over the semiconductor device. The semiconductor arrangement also includes a protective ring within at least one of the logic region or the memory region and that separates the logic region from the memory region. The capacitor has a first electrode, a second electrode and an insulating layer between the first electrode and the second electrode, where the first electrode is substantially larger than other portions of the capacitor.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: November 29, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai, Xiaomeng Chen, Chen-Jong Wang
  • Patent number: 9502515
    Abstract: A method of manufacturing a split gate flash memory cell is provided. A select gate is formed on a semiconductor substrate. A sacrificial spacer is formed laterally adjacent to the select gate and on a first side of the select gate. A charge trapping layer is formed lining upper surfaces of the select gate and the sacrificial spacer, and further lining a sidewall surface of the select gate on a second side of the select gate that is opposite the first side of the select gate. A memory gate is formed over the charge trapping layer and on the second side of the select gate. The sacrificial spacer is removed. The resulting semiconductor structure is also provided.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yuan-Tai Tseng, Ming Chyi Liu, Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9502514
    Abstract: A device comprises a control gate structure over a substrate, a memory gate structure over the substrate, wherein a charge storage layer formed between the control gate structure and the memory gate structure, a first spacer along a sidewall of the memory gate structure, a second spacer over a top surface of the memory gate structure, a first drain/source region formed in the substrate and adjacent to the memory gate structure and a second drain/source region formed in the substrate and adjacent to the control gate structure.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Ming Wu, Wei Cheng Wu, Shih-Chang Liu, Chia-Shiung Tsai, Harry-Hak-Lay Chuang
  • Publication number: 20160336314
    Abstract: A semiconductor structure with a MISFET and a HEMT region includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A third III-V compound layer is disposed on the second III-V compound layer is different from the second III-V compound layer in composition. A source feature and a drain feature are disposed in each of the MISFET and HEMT regions on the third III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A gate dielectric layer is disposed under the gate electrode in the MISFET region but above the top surface of the third III-V compound layer.
    Type: Application
    Filed: July 29, 2016
    Publication date: November 17, 2016
    Inventors: Chung-Yen Chou, Sheng-De Liu, Fu-Chih Yang, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20160332867
    Abstract: An integrated circuit (IC) device is provided. The IC device includes a first substrate having a frontside and a backside. The backside includes a first cavity extending into the first substrate. A dielectric layer is disposed on the backside of the first substrate, and includes an opening corresponding to the first cavity and a trench extending laterally away from the opening and terminating at a gas inlet recess. A recess in the frontside of the first substrate extends downwardly from the frontside to the dielectric layer. The recess has substantially vertical upper sidewalls which adjoin lower sidewalls which taper inwardly from the substantially vertical sidewalls to points on the dielectric layer which circumscribe the gas inlet recess. A conformal sealant layer is arranged over the frontside of the first substrate, along the substantially vertical upper sidewalls, and along the lower sidewalls. The sealant layer hermetically seals the gas inlet recess.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 17, 2016
    Inventors: Lee-Chuan Tseng, Chang-Ming Wu, Shih-Chang Liu
  • Publication number: 20160336415
    Abstract: A split-gate flash memory cell for improved erase speed is provided. An erase gate and a floating gate are laterally spaced over a semiconductor substrate. The floating gate has a height increasing towards the erase gate, a concave sidewall surface neighboring the erase gate, and a tip defined an interface of the concave sidewall surface and an upper surface of the floating gate. A control gate and a sidewall spacer are arranged over the upper surface of the floating gate. The control gate is laterally offset from the tip of the floating gate, and the sidewall spacer is laterally arranged between the control gate and the tip. A method for manufacturing the split-gate flash memory cell is also provided.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 17, 2016
    Inventors: Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9496276
    Abstract: A semiconductor device includes a substrate, at least one logic device and a split gate memory device. The at least one logic device is located on the substrate. The split gate memory device is located on the substrate and comprises a memory gate and a select gate. The memory gate and the select gate are adjacent to and electrically isolated with each other. A top of the select gate is higher than a top of the memory gate.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: November 15, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Harry Hak-Lay Chuang, Wei-Cheng Wu, Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9484352
    Abstract: An embedded flash memory device is provided. A gate stack includes a control gate arranged over a floating gate. An erase gate is arranged adjacent to a first side of the gate stack. A word line is arranged adjacent to a second side of the gate stack that is opposite the first side. The word line includes a word line ledge exhibiting a reduced height relative to a top surface of the word line and on an opposite side of the word line as the gate stack. A polysilicon logic gate has a top surface approximately even with the word line ledge. An ILD layer is arranged over the gate stack, the erase gate, the polysilicon logic gate, and the word lines. A contact extends through the ILD layer. A method of manufacturing the embedded flash memory device is also provided.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: November 1, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chang-Ming Wu, Shih-Chang Liu