Patents by Inventor Shih-Che Lin

Shih-Che Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11227830
    Abstract: Methods to form vertically conducting and laterally conducting low-cost resistor structures utilizing dual-resistivity conductive materials are provided. The dual-resistivity conductive materials are deposited in openings in a dielectric layer using a single deposition process step. A high-resistivity ?-phase of tungsten is stabilized by pre-treating portions of the dielectric material with impurities. The portions of the dielectric material in which impurities are incorporated encompass regions laterally adjacent to where high-resistivity ?-W is desired. During a subsequent tungsten deposition step the impurities may out-diffuse and get incorporated in the tungsten, thereby stabilizing the metal in the high-resistivity ?-W phase. The ?-W converts to a low-resistivity ?-phase of tungsten in the regions not pre-treated with impurities.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: January 18, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jia-En Lee, Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang
  • Publication number: 20210397074
    Abstract: A projection module includes a light source, a reflective structure, and an optical structure. The light source emits laser light. The reflective structure includes a first reflective element and a second reflective element. The optical structure includes a first optical element and a second optical element. The reflective structure is disposed between the laser source and the optical structure. The first reflective element reflects a portion of the laser light towards the second reflective element, and transmits a remaining portion of the laser light towards the second optical element. The second reflective element reflects the laser light from the first reflective element towards the first optical element. The first optical element and the second optical element cooperatively project the laser beam towards an object.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 23, 2021
    Inventors: SHIH-CHE LIN, TAO WANG, YONG-BO LUO
  • Publication number: 20210367043
    Abstract: Vertical interconnect structures and methods of forming are provided. The vertical interconnect structures may be formed by partially filling a first opening through one or more dielectric layers with layers of conductive materials. A second opening is formed in a dielectric layer such that a depth of the first opening after partially filling with the layers of conductive materials is close to a depth of the second opening. The remaining portion of the first opening and the second opening may then be simultaneously filled.
    Type: Application
    Filed: August 3, 2021
    Publication date: November 25, 2021
    Inventors: Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Chen-Yuan Kao
  • Patent number: 11177212
    Abstract: A method and structure for forming semiconductor device includes forming a contact via opening in a first dielectric layer, where the contact via opening exposes a first portion of a contact etch stop layer (CESL). The method further includes etching both the first portion of the CESL exposed by the contact via opening and adjacent lateral portions of the CESL to expose a source/drain contact and form an enlarged contact via opening having cavities disposed on either side of a bottom portion of the enlarged contact via opening. The method further includes forming a passivation layer on sidewall surfaces of the enlarged contact via opening including on sidewall surfaces of the cavities. The method further includes depositing a first metal layer within the enlarged contact via opening and within the cavities to provide a contact via in contact with the exposed source/drain contact.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: November 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang
  • Publication number: 20210320061
    Abstract: A method and structure for forming semiconductor device includes forming a contact via opening in a first dielectric layer, where the contact via opening exposes a first portion of a contact etch stop layer (CESL). The method further includes etching both the first portion of the CESL exposed by the contact via opening and adjacent lateral portions of the CESL to expose a source/drain contact and form an enlarged contact via opening having cavities disposed on either side of a bottom portion of the enlarged contact via opening. The method further includes forming a passivation layer on sidewall surfaces of the enlarged contact via opening including on sidewall surfaces of the cavities. The method further includes depositing a first metal layer within the enlarged contact via opening and within the cavities to provide a contact via in contact with the exposed source/drain contact.
    Type: Application
    Filed: April 13, 2020
    Publication date: October 14, 2021
    Inventors: Po-Yu HUANG, Shih-Che LIN, Chao-Hsun WANG, Kuo-Yi CHAO, Mei-Yun WANG
  • Patent number: 11107896
    Abstract: Vertical interconnect structures and methods of forming are provided. The vertical interconnect structures may be formed by partially filling a first opening through one or more dielectric layers with layers of conductive materials. A second opening is formed in a dielectric layer such that a depth of the first opening after partially filling with the layers of conductive materials is close to a depth of the second opening. The remaining portion of the first opening and the second opening may then be simultaneously filled.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: August 31, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Chen-Yuan Kao
  • Publication number: 20210098376
    Abstract: Vias, along with methods for fabricating vias, are disclosed that exhibit reduced capacitance and resistance. An exemplary interconnect structure includes a first source/drain contact and a second source/drain contact disposed in a dielectric layer. The first source/drain contact physically contacts a first source/drain feature and the second source/drain contact physically contacts a second source/drain feature. A first via having a first via layer configuration, a second via having a second via layer configuration, and a third via having a third via layer configuration are disposed in the dielectric layer. The first via and the second via extend into and physically contact the first source/drain contact and the second source/drain contact, respectively. A first thickness of the first via and a second thickness of the second via are the same. The third via physically contacts a gate structure, which is disposed between the first source/drain contact and the second source/drain contact.
    Type: Application
    Filed: August 4, 2020
    Publication date: April 1, 2021
    Inventors: Shih-Che Lin, Po-Yu Huang, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Wei-Jung Lin, Chen-Yuan Kao
  • Publication number: 20210091190
    Abstract: A source/drain is disposed over a substrate. A source/drain contact is disposed over the source/drain. A first via is disposed over the source/drain contact. The first via has a laterally-protruding bottom portion and a top portion that is disposed over the laterally-protruding bottom portion.
    Type: Application
    Filed: June 11, 2020
    Publication date: March 25, 2021
    Inventors: Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang
  • Publication number: 20200176574
    Abstract: Vertical interconnect structures and methods of forming are provided. The vertical interconnect structures may be formed by partially filling a first opening through one or more dielectric layers with layers of conductive materials. A second opening is formed in a dielectric layer such that a depth of the first opening after partially filling with the layers of conductive materials is close to a depth of the second opening. The remaining portion of the first opening and the second opening may then be simultaneously filled.
    Type: Application
    Filed: May 10, 2019
    Publication date: June 4, 2020
    Inventors: Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Chen-Yuan Kao
  • Publication number: 20200135641
    Abstract: Methods to form vertically conducting and laterally conducting low-cost resistor structures utilizing dual-resistivity conductive materials are provided. The dual-resistivity conductive materials are deposited in openings in a dielectric layer using a single deposition process step. A high-resistivity ?-phase of tungsten is stabilized by pre-treating portions of the dielectric material with impurities. The portions of the dielectric material in which impurities are incorporated encompass regions laterally adjacent to where high-resistivity ?-W is desired. During a subsequent tungsten deposition step the impurities may out-diffuse and get incorporated in the tungsten, thereby stabilizing the metal in the high-resistivity ?-W phase. The ?-W converts to a low-resistivity ?-phase of tungsten in the regions not pre-treated with impurities.
    Type: Application
    Filed: August 5, 2019
    Publication date: April 30, 2020
    Inventors: Jia-En Lee, Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang
  • Patent number: 10324517
    Abstract: A FPGA-based system power estimation apparatus and a method for estimating the power of a target intellectual property (IP) circuit are provided. The system power estimation apparatus includes a FPGA and a power analysis circuit. The FPGA is configured to accommodate the target IP circuit. The power analysis circuit is disposed into the FPGA. The power analysis circuit retrieves an internal operation-state signal of the target IP circuit. The power analysis circuit examines the internal operation-state signal to determine an operation state of the target IP circuit and uses a power model to convert the operation state of the target IP circuit into at least one power value.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: June 18, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Yung-Chieh Lin, Shih-Che Lin, Chao-Hong Chen, Liang-Chia Cheng
  • Patent number: 10002802
    Abstract: Methods for reducing core-to-core mismatch are provided. The method includes measuring gate lengths of a representative pattern of each core in a first lot of SOC products by a measurement apparatus. Each of the SOC products in the first lot includes more than two cores identical to each other. The method also includes determining a tuning amount according to the differences between the gate lengths of each core, and adjusting at least one mask for critical dimensions of gate length of each core in a second lot of SOC products respectively according to the tuning amounts.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: June 19, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sheng-Tang Wang, Chia-Ming Chang, Shih-Che Lin, Chao-Jui Wang
  • Publication number: 20180120916
    Abstract: A FPGA-based system power estimation apparatus and a method for estimating the power of a target intellectual property (IP) circuit are provided. The system power estimation apparatus includes a FPGA and a power analysis circuit. The FPGA is configured to accommodate the target IP circuit. The power analysis circuit is disposed into the FPGA. The power analysis circuit retrieves an internal operation-state signal of the target IP circuit. The power analysis circuit examines the internal operation-state signal to determine an operation state of the target IP circuit and uses a power model to convert the operation state of the target IP circuit into at least one power value.
    Type: Application
    Filed: December 9, 2016
    Publication date: May 3, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Yung-Chieh Lin, Shih-Che Lin, Chao-Hong Chen, Liang-Chia Cheng
  • Patent number: 9837401
    Abstract: Semiconductor devices, transistors, and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes a gate dielectric disposed over a workpiece, a gate disposed over the gate dielectric, and a spacer disposed over sidewalls of the gate and the gate dielectric. A source region is disposed proximate the spacer on a first side of the gate, and a drain region is disposed proximate the spacer on a second side of the gate. A metal layer is disposed over the source region and the drain region. The metal layer extends beneath the spacers by about 25% or greater than a width of the spacers.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: December 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Kun Huang, Shih-Che Lin, Hung-Chih Yu
  • Publication number: 20170263509
    Abstract: Methods for reducing core-to-core mismatch are provided. The method includes measuring gate lengths of a representative pattern of each core in a first lot of SOC products by a measurement apparatus. Each of the SOC products in the first lot includes more than two cores identical to each other. The method also includes determining a tuning amount according to the differences between the gate lengths of each core, and adjusting at least one mask for critical dimensions of gate length of each core in a second lot of SOC products respectively according to the tuning amounts.
    Type: Application
    Filed: May 26, 2017
    Publication date: September 14, 2017
    Inventors: Sheng-Tang WANG, Chia-Ming CHANG, Shih-Che LIN, Chao-Jui WANG
  • Patent number: 9666495
    Abstract: Methods for reducing core-to-core mismatch are provided. The method includes measuring gate lengths of a representative pattern of each core in a first lot of SOC products by a measurement apparatus. Each of the SOC products in the first lot includes more than two cores identical to each other. The method also includes determining tuning amounts according to the differences between the gate lengths of each core, and adjusting manufacturing conditions for critical dimensions of gate length of each core in a second lot of SOC products respectively according to the tuning amounts for reducing core-to-core mismatch due to the surrounding environment of each core. Each of the SOC products in the second lot includes more than two cores identical to each other and also identical to the cores in the first lot.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: May 30, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sheng-Tang Wang, Chia-Ming Chang, Shih-Che Lin, Chao-Jui Wang
  • Publication number: 20150168488
    Abstract: Methods for reducing core-to-core mismatch are provided. The method includes measuring gate lengths of a representative pattern of each core in a first lot of SOC products by a measurement apparatus. Each of the SOC products in the first lot includes more than two cores identical to each other. The method also includes determining tuning amounts according to the differences between the gate lengths of each core, and adjusting manufacturing conditions for critical dimensions of gate length of each core in a second lot of SOC products respectively according to the tuning amounts for reducing core-to-core mismatch due to the surrounding environment of each core. Each of the SOC products in the second lot includes more than two cores identical to each other and also identical to the core in the first lot.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 18, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Tang WANG, Chia-Ming CHANG, Shih-Che LIN, Chao-Jui WANG
  • Publication number: 20150061035
    Abstract: Semiconductor devices, transistors, and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes a gate dielectric disposed over a workpiece, a gate disposed over the gate dielectric, and a spacer disposed over sidewalls of the gate and the gate dielectric. A source region is disposed proximate the spacer on a first side of the gate, and a drain region is disposed proximate the spacer on a second side of the gate. A metal layer is disposed over the source region and the drain region. The metal layer extends beneath the spacers by about 25% or greater than a width of the spacers.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Inventors: Ching-Kun Huang, Shih-Che Lin, Hung-Chih Yu
  • Patent number: 8883583
    Abstract: Semiconductor devices, transistors, and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes a gate dielectric disposed over a workpiece, a gate disposed over the gate dielectric, and a spacer disposed over sidewalls of the gate and the gate dielectric. A source region is disposed proximate the spacer on a first side of the gate, and a drain region is disposed proximate the spacer on a second side of the gate. A metal layer is disposed over the source region and the drain region. The metal layer extends beneath the spacers by about 25% or greater than a width of the spacers.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Kun Huang, Shih-Che Lin, Hung-Chih Yu
  • Publication number: 20130341686
    Abstract: Semiconductor devices, transistors, and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes a gate dielectric disposed over a workpiece, a gate disposed over the gate dielectric, and a spacer disposed over sidewalls of the gate and the gate dielectric. A source region is disposed proximate the spacer on a first side of the gate, and a drain region is disposed proximate the spacer on a second side of the gate. A metal layer is disposed over the source region and the drain region. The metal layer extends beneath the spacers by about 25% or greater than a width of the spacers.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 26, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ching-Kun Huang, Shih-Che Lin, Hung-Chih Yu